The Centrally Extended Heisenberg Algebra and Its Connection with the Schroedinger, Galilei and Renormalized Higher Powers of Quantum White Noise Lie Algebras

In previous papers we have shown that the one mode Heisenberg algebra Heis(1) admits a unique non-trivial central extensions CeHeis(1) which can be realized as a sub-Lie-algebra of the Schroedinger algebra, in fact the Galilei Lie algebra. This gives a natural family of unitary representations of Ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2010-06, Vol.1243 (1)
Hauptverfasser: Accardi, Luigi, Boukas, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title AIP conference proceedings
container_volume 1243
creator Accardi, Luigi
Boukas, Andreas
description In previous papers we have shown that the one mode Heisenberg algebra Heis(1) admits a unique non-trivial central extensions CeHeis(1) which can be realized as a sub-Lie-algebra of the Schroedinger algebra, in fact the Galilei Lie algebra. This gives a natural family of unitary representations of CeHeis(1) and allows an explicit determination of the associated group by exponentiation. In contrast with Heis(1), the group law for CeHeis(1) is given by nonlinear (quadratic) functions of the coordinates. The vacuum characteristic and moment generating functions of the classical random variables canonically associated to CeHeis(1) are computed. The second quantization of CeHeis(1) is also considered.
doi_str_mv 10.1063/1.3460157
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_21366952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21366952</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_213669523</originalsourceid><addsrcrecordid>eNqNjk1LAzEYhIMouFYP_oMXvLptstnNukdZaiuI-FHQW0mzbzeRNIEkpeqP8be6ft09DQzzzAwhp4yOGRV8wsa8FJRV9R7JWFWxvBZM7JOM0qbMi5I_H5KjGF8oLZq6vsjIx0IjtOhSkNa-wfQ1oeuwgzmaiG6FoYdL2-MqSJCug-sUofXOoUrGO9iZpCENDY9KB4-dcT2Gc5hJayyab-IBnQ-bwXj_ajW9xgB3fochgl_D_Va6tN3AkzYJ4dYPo3Bj8G8zHpODtbQRT351RM6upot2nvuYzDKqgVJa_RxaFowL0VQF_1_qEwXfYBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Centrally Extended Heisenberg Algebra and Its Connection with the Schroedinger, Galilei and Renormalized Higher Powers of Quantum White Noise Lie Algebras</title><source>AIP Journals</source><creator>Accardi, Luigi ; Boukas, Andreas</creator><creatorcontrib>Accardi, Luigi ; Boukas, Andreas</creatorcontrib><description>In previous papers we have shown that the one mode Heisenberg algebra Heis(1) admits a unique non-trivial central extensions CeHeis(1) which can be realized as a sub-Lie-algebra of the Schroedinger algebra, in fact the Galilei Lie algebra. This gives a natural family of unitary representations of CeHeis(1) and allows an explicit determination of the associated group by exponentiation. In contrast with Heis(1), the group law for CeHeis(1) is given by nonlinear (quadratic) functions of the coordinates. The vacuum characteristic and moment generating functions of the classical random variables canonically associated to CeHeis(1) are computed. The second quantization of CeHeis(1) is also considered.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.3460157</identifier><language>eng</language><publisher>United States</publisher><subject>ALGEBRA ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; FUNCTIONAL ANALYSIS ; HEISENBERG PICTURE ; LIE GROUPS ; MATHEMATICS ; MECHANICS ; NONLINEAR PROBLEMS ; PARTIAL DIFFERENTIAL EQUATIONS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUANTIZATION ; QUANTUM MECHANICS ; RANDOMNESS ; RENORMALIZATION ; SCHROEDINGER EQUATION ; SECOND QUANTIZATION ; SYMMETRY GROUPS ; WAVE EQUATIONS</subject><ispartof>AIP conference proceedings, 2010-06, Vol.1243 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21366952$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Accardi, Luigi</creatorcontrib><creatorcontrib>Boukas, Andreas</creatorcontrib><title>The Centrally Extended Heisenberg Algebra and Its Connection with the Schroedinger, Galilei and Renormalized Higher Powers of Quantum White Noise Lie Algebras</title><title>AIP conference proceedings</title><description>In previous papers we have shown that the one mode Heisenberg algebra Heis(1) admits a unique non-trivial central extensions CeHeis(1) which can be realized as a sub-Lie-algebra of the Schroedinger algebra, in fact the Galilei Lie algebra. This gives a natural family of unitary representations of CeHeis(1) and allows an explicit determination of the associated group by exponentiation. In contrast with Heis(1), the group law for CeHeis(1) is given by nonlinear (quadratic) functions of the coordinates. The vacuum characteristic and moment generating functions of the classical random variables canonically associated to CeHeis(1) are computed. The second quantization of CeHeis(1) is also considered.</description><subject>ALGEBRA</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>FUNCTIONAL ANALYSIS</subject><subject>HEISENBERG PICTURE</subject><subject>LIE GROUPS</subject><subject>MATHEMATICS</subject><subject>MECHANICS</subject><subject>NONLINEAR PROBLEMS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUANTIZATION</subject><subject>QUANTUM MECHANICS</subject><subject>RANDOMNESS</subject><subject>RENORMALIZATION</subject><subject>SCHROEDINGER EQUATION</subject><subject>SECOND QUANTIZATION</subject><subject>SYMMETRY GROUPS</subject><subject>WAVE EQUATIONS</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNjk1LAzEYhIMouFYP_oMXvLptstnNukdZaiuI-FHQW0mzbzeRNIEkpeqP8be6ft09DQzzzAwhp4yOGRV8wsa8FJRV9R7JWFWxvBZM7JOM0qbMi5I_H5KjGF8oLZq6vsjIx0IjtOhSkNa-wfQ1oeuwgzmaiG6FoYdL2-MqSJCug-sUofXOoUrGO9iZpCENDY9KB4-dcT2Gc5hJayyab-IBnQ-bwXj_ajW9xgB3fochgl_D_Va6tN3AkzYJ4dYPo3Bj8G8zHpODtbQRT351RM6upot2nvuYzDKqgVJa_RxaFowL0VQF_1_qEwXfYBg</recordid><startdate>20100617</startdate><enddate>20100617</enddate><creator>Accardi, Luigi</creator><creator>Boukas, Andreas</creator><scope>OTOTI</scope></search><sort><creationdate>20100617</creationdate><title>The Centrally Extended Heisenberg Algebra and Its Connection with the Schroedinger, Galilei and Renormalized Higher Powers of Quantum White Noise Lie Algebras</title><author>Accardi, Luigi ; Boukas, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_213669523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ALGEBRA</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>FUNCTIONAL ANALYSIS</topic><topic>HEISENBERG PICTURE</topic><topic>LIE GROUPS</topic><topic>MATHEMATICS</topic><topic>MECHANICS</topic><topic>NONLINEAR PROBLEMS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUANTIZATION</topic><topic>QUANTUM MECHANICS</topic><topic>RANDOMNESS</topic><topic>RENORMALIZATION</topic><topic>SCHROEDINGER EQUATION</topic><topic>SECOND QUANTIZATION</topic><topic>SYMMETRY GROUPS</topic><topic>WAVE EQUATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Accardi, Luigi</creatorcontrib><creatorcontrib>Boukas, Andreas</creatorcontrib><collection>OSTI.GOV</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Accardi, Luigi</au><au>Boukas, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Centrally Extended Heisenberg Algebra and Its Connection with the Schroedinger, Galilei and Renormalized Higher Powers of Quantum White Noise Lie Algebras</atitle><jtitle>AIP conference proceedings</jtitle><date>2010-06-17</date><risdate>2010</risdate><volume>1243</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>In previous papers we have shown that the one mode Heisenberg algebra Heis(1) admits a unique non-trivial central extensions CeHeis(1) which can be realized as a sub-Lie-algebra of the Schroedinger algebra, in fact the Galilei Lie algebra. This gives a natural family of unitary representations of CeHeis(1) and allows an explicit determination of the associated group by exponentiation. In contrast with Heis(1), the group law for CeHeis(1) is given by nonlinear (quadratic) functions of the coordinates. The vacuum characteristic and moment generating functions of the classical random variables canonically associated to CeHeis(1) are computed. The second quantization of CeHeis(1) is also considered.</abstract><cop>United States</cop><doi>10.1063/1.3460157</doi></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2010-06, Vol.1243 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_osti_scitechconnect_21366952
source AIP Journals
subjects ALGEBRA
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DIFFERENTIAL EQUATIONS
EQUATIONS
FUNCTIONAL ANALYSIS
HEISENBERG PICTURE
LIE GROUPS
MATHEMATICS
MECHANICS
NONLINEAR PROBLEMS
PARTIAL DIFFERENTIAL EQUATIONS
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
QUANTIZATION
QUANTUM MECHANICS
RANDOMNESS
RENORMALIZATION
SCHROEDINGER EQUATION
SECOND QUANTIZATION
SYMMETRY GROUPS
WAVE EQUATIONS
title The Centrally Extended Heisenberg Algebra and Its Connection with the Schroedinger, Galilei and Renormalized Higher Powers of Quantum White Noise Lie Algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Centrally%20Extended%20Heisenberg%20Algebra%20and%20Its%20Connection%20with%20the%20Schroedinger,%20Galilei%20and%20Renormalized%20Higher%20Powers%20of%20Quantum%20White%20Noise%20Lie%20Algebras&rft.jtitle=AIP%20conference%20proceedings&rft.au=Accardi,%20Luigi&rft.date=2010-06-17&rft.volume=1243&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.3460157&rft_dat=%3Costi%3E21366952%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true