Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells
This study employs chlorophyll extract from pomegranate leaf and anthocyanin extract from mulberry fruit as the natural dyes for a dye-sensitized solar cell (DSSC). A self-developed nanofluid synthesis system is employed to prepare TiO 2 nanofluid with an average particle size of 25 nm. Electrophore...
Gespeichert in:
Veröffentlicht in: | Solar energy 2010-10, Vol.84 (10), p.1833-1837 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1837 |
---|---|
container_issue | 10 |
container_start_page | 1833 |
container_title | Solar energy |
container_volume | 84 |
creator | Chang, Ho Lo, Yu-Jen |
description | This study employs chlorophyll extract from pomegranate leaf and anthocyanin extract from mulberry fruit as the natural dyes for a dye-sensitized solar cell (DSSC). A self-developed nanofluid synthesis system is employed to prepare TiO
2 nanofluid with an average particle size of 25
nm. Electrophoresis deposition was performed to deposit TiO
2 nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO
2 thin film with the thickness of 11
μm. Furthermore, this TiO
2 thin film was sintered at 450
°C to enhance the thin film compactness. Sputtering was used to prepare counter electrode by depositing Pt thin film on FTO glass at a thickness of 20
nm. The electrodes, electrolyte (
I
3
-
), and dyes were assembled into a cell module and illuminated by a light source simulating AM 1.5 with a light strength of 100
mW/cm
2 to measure the photoelectric conversion efficiency of the prepared DSSCs. According to experimental results, the conversion efficiency of the DSSCs prepared by chlorophyll dyes from pomegranate leaf extract is 0.597%, with open-circuit voltage (
V
OC
) of 0.56
V, short-circuit current density (
J
SC
) of 2.05
mA/cm
2, and fill factor (FF) of 0.52. The conversion efficiency of the DSSCs prepared by anthocyanin dyes from mulberry extract is 0.548%, with
V
OC
of 0.555
V and
J
SC
of 1.89
mA/cm
2 and FF of 0.53. The conversion efficiency is 0.722% for chlorophyll and anthocyanin as the dye mixture, with
V
OC
of 0.53
V,
J
SC
of 2.8
mA/cm
2, and FF of 0.49. |
doi_str_mv | 10.1016/j.solener.2010.07.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21350414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X10002446</els_id><sourcerecordid>1671287164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-3992afe9dcd86d67caf76b8bcf0d0dadb99064ee2a4f29cebd4f684f391259953</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxRtRcNz1IwhBEb30bCXdnXROsiz-gwX3oCB4COmkohl6Omuqe2H89KaZYQ8e3FNB8atXVe9V1QsOWw5cXuy2lEacMG8FlB6oLYB-VG14q3jNRaceVxuApq9Bi-9Pq2dEOwCueK821Y-btMef2U52RjaivUNidvJsv4wD5nxgIS9xZpZYIZZsR0Y4UZzjH8zEQsrMH7C-73lWTrGZORxHOq-eBDsSPj_Vs-rbh_dfrz7V118-fr66vK5dBzDXjdbCBtTe-V56qZwNSg794AJ48NYPWoNsEYVtg9AOB98G2beh0eU3rbvmrHp11E00R0Muzuh-uTRN6GYjeNNBy9tCvTlStzn9XpBms4-03mknTAuZvutUMUhCId_-l-RScdErLlfRl_-gu7TkqXxrVAcNF6rVBeqOkMuJKGMwtznubT4YDmZN0OzMKUGzJmhAmZJgmXt9Erfk7BhKSi7S_bBohOyavincuyOHxeS7WFSKBzg59DGvFvgUH9j0FxxhtMk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750312749</pqid></control><display><type>article</type><title>Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chang, Ho ; Lo, Yu-Jen</creator><creatorcontrib>Chang, Ho ; Lo, Yu-Jen</creatorcontrib><description>This study employs chlorophyll extract from pomegranate leaf and anthocyanin extract from mulberry fruit as the natural dyes for a dye-sensitized solar cell (DSSC). A self-developed nanofluid synthesis system is employed to prepare TiO
2 nanofluid with an average particle size of 25
nm. Electrophoresis deposition was performed to deposit TiO
2 nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO
2 thin film with the thickness of 11
μm. Furthermore, this TiO
2 thin film was sintered at 450
°C to enhance the thin film compactness. Sputtering was used to prepare counter electrode by depositing Pt thin film on FTO glass at a thickness of 20
nm. The electrodes, electrolyte (
I
3
-
), and dyes were assembled into a cell module and illuminated by a light source simulating AM 1.5 with a light strength of 100
mW/cm
2 to measure the photoelectric conversion efficiency of the prepared DSSCs. According to experimental results, the conversion efficiency of the DSSCs prepared by chlorophyll dyes from pomegranate leaf extract is 0.597%, with open-circuit voltage (
V
OC
) of 0.56
V, short-circuit current density (
J
SC
) of 2.05
mA/cm
2, and fill factor (FF) of 0.52. The conversion efficiency of the DSSCs prepared by anthocyanin dyes from mulberry extract is 0.548%, with
V
OC
of 0.555
V and
J
SC
of 1.89
mA/cm
2 and FF of 0.53. The conversion efficiency is 0.722% for chlorophyll and anthocyanin as the dye mixture, with
V
OC
of 0.53
V,
J
SC
of 2.8
mA/cm
2, and FF of 0.49.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2010.07.009</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anthocyanin ; Anthocyanins ; Applied sciences ; CHLOROPHYLL ; Chlorophylls ; CONVERSION ; CURRENT DENSITY ; CYANINE DYES ; DEPOSITION ; Dye cocktails ; Dye-sensitized solar cells ; Dyes ; EFFICIENCY ; ELECTRIC CURRENTS ; ELECTRIC POTENTIAL ; ELECTRODES ; ELECTROPHORESIS ; Energy ; Exact sciences and technology ; Extraction processes ; FILL FACTORS ; FRUITS ; GLASS ; INDIUM OXIDES ; LEAVES ; MIXTURES ; Nanoparticles ; Nanostructure ; NANOSTRUCTURES ; Natural dyes ; Natural energy ; PARTICLE SIZE ; PARTICLES ; Photovoltaic cells ; Photovoltaic conversion ; Pomegranates ; SENSITIZERS ; SOLAR CELLS ; Solar cells. Photoelectrochemical cells ; SOLAR ENERGY ; SPUTTERING ; Studies ; SYNTHESIS ; TEMPERATURE RANGE 0400-1000 K ; THIN FILMS ; Tin ; TIN OXIDES ; Titanium dioxide ; TITANIUM OXIDES ; VISIBLE RADIATION ; Volatile organic compounds</subject><ispartof>Solar energy, 2010-10, Vol.84 (10), p.1833-1837</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-3992afe9dcd86d67caf76b8bcf0d0dadb99064ee2a4f29cebd4f684f391259953</citedby><cites>FETCH-LOGICAL-c500t-3992afe9dcd86d67caf76b8bcf0d0dadb99064ee2a4f29cebd4f684f391259953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2010.07.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23265383$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21350414$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Ho</creatorcontrib><creatorcontrib>Lo, Yu-Jen</creatorcontrib><title>Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells</title><title>Solar energy</title><description>This study employs chlorophyll extract from pomegranate leaf and anthocyanin extract from mulberry fruit as the natural dyes for a dye-sensitized solar cell (DSSC). A self-developed nanofluid synthesis system is employed to prepare TiO
2 nanofluid with an average particle size of 25
nm. Electrophoresis deposition was performed to deposit TiO
2 nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO
2 thin film with the thickness of 11
μm. Furthermore, this TiO
2 thin film was sintered at 450
°C to enhance the thin film compactness. Sputtering was used to prepare counter electrode by depositing Pt thin film on FTO glass at a thickness of 20
nm. The electrodes, electrolyte (
I
3
-
), and dyes were assembled into a cell module and illuminated by a light source simulating AM 1.5 with a light strength of 100
mW/cm
2 to measure the photoelectric conversion efficiency of the prepared DSSCs. According to experimental results, the conversion efficiency of the DSSCs prepared by chlorophyll dyes from pomegranate leaf extract is 0.597%, with open-circuit voltage (
V
OC
) of 0.56
V, short-circuit current density (
J
SC
) of 2.05
mA/cm
2, and fill factor (FF) of 0.52. The conversion efficiency of the DSSCs prepared by anthocyanin dyes from mulberry extract is 0.548%, with
V
OC
of 0.555
V and
J
SC
of 1.89
mA/cm
2 and FF of 0.53. The conversion efficiency is 0.722% for chlorophyll and anthocyanin as the dye mixture, with
V
OC
of 0.53
V,
J
SC
of 2.8
mA/cm
2, and FF of 0.49.</description><subject>Anthocyanin</subject><subject>Anthocyanins</subject><subject>Applied sciences</subject><subject>CHLOROPHYLL</subject><subject>Chlorophylls</subject><subject>CONVERSION</subject><subject>CURRENT DENSITY</subject><subject>CYANINE DYES</subject><subject>DEPOSITION</subject><subject>Dye cocktails</subject><subject>Dye-sensitized solar cells</subject><subject>Dyes</subject><subject>EFFICIENCY</subject><subject>ELECTRIC CURRENTS</subject><subject>ELECTRIC POTENTIAL</subject><subject>ELECTRODES</subject><subject>ELECTROPHORESIS</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Extraction processes</subject><subject>FILL FACTORS</subject><subject>FRUITS</subject><subject>GLASS</subject><subject>INDIUM OXIDES</subject><subject>LEAVES</subject><subject>MIXTURES</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>NANOSTRUCTURES</subject><subject>Natural dyes</subject><subject>Natural energy</subject><subject>PARTICLE SIZE</subject><subject>PARTICLES</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Pomegranates</subject><subject>SENSITIZERS</subject><subject>SOLAR CELLS</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>SOLAR ENERGY</subject><subject>SPUTTERING</subject><subject>Studies</subject><subject>SYNTHESIS</subject><subject>TEMPERATURE RANGE 0400-1000 K</subject><subject>THIN FILMS</subject><subject>Tin</subject><subject>TIN OXIDES</subject><subject>Titanium dioxide</subject><subject>TITANIUM OXIDES</subject><subject>VISIBLE RADIATION</subject><subject>Volatile organic compounds</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU-LFDEQxRtRcNz1IwhBEb30bCXdnXROsiz-gwX3oCB4COmkohl6Omuqe2H89KaZYQ8e3FNB8atXVe9V1QsOWw5cXuy2lEacMG8FlB6oLYB-VG14q3jNRaceVxuApq9Bi-9Pq2dEOwCueK821Y-btMef2U52RjaivUNidvJsv4wD5nxgIS9xZpZYIZZsR0Y4UZzjH8zEQsrMH7C-73lWTrGZORxHOq-eBDsSPj_Vs-rbh_dfrz7V118-fr66vK5dBzDXjdbCBtTe-V56qZwNSg794AJ48NYPWoNsEYVtg9AOB98G2beh0eU3rbvmrHp11E00R0Muzuh-uTRN6GYjeNNBy9tCvTlStzn9XpBms4-03mknTAuZvutUMUhCId_-l-RScdErLlfRl_-gu7TkqXxrVAcNF6rVBeqOkMuJKGMwtznubT4YDmZN0OzMKUGzJmhAmZJgmXt9Erfk7BhKSi7S_bBohOyavincuyOHxeS7WFSKBzg59DGvFvgUH9j0FxxhtMk</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Chang, Ho</creator><creator>Lo, Yu-Jen</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>7SU</scope><scope>OTOTI</scope></search><sort><creationdate>20101001</creationdate><title>Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells</title><author>Chang, Ho ; Lo, Yu-Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-3992afe9dcd86d67caf76b8bcf0d0dadb99064ee2a4f29cebd4f684f391259953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anthocyanin</topic><topic>Anthocyanins</topic><topic>Applied sciences</topic><topic>CHLOROPHYLL</topic><topic>Chlorophylls</topic><topic>CONVERSION</topic><topic>CURRENT DENSITY</topic><topic>CYANINE DYES</topic><topic>DEPOSITION</topic><topic>Dye cocktails</topic><topic>Dye-sensitized solar cells</topic><topic>Dyes</topic><topic>EFFICIENCY</topic><topic>ELECTRIC CURRENTS</topic><topic>ELECTRIC POTENTIAL</topic><topic>ELECTRODES</topic><topic>ELECTROPHORESIS</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Extraction processes</topic><topic>FILL FACTORS</topic><topic>FRUITS</topic><topic>GLASS</topic><topic>INDIUM OXIDES</topic><topic>LEAVES</topic><topic>MIXTURES</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>NANOSTRUCTURES</topic><topic>Natural dyes</topic><topic>Natural energy</topic><topic>PARTICLE SIZE</topic><topic>PARTICLES</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Pomegranates</topic><topic>SENSITIZERS</topic><topic>SOLAR CELLS</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>SOLAR ENERGY</topic><topic>SPUTTERING</topic><topic>Studies</topic><topic>SYNTHESIS</topic><topic>TEMPERATURE RANGE 0400-1000 K</topic><topic>THIN FILMS</topic><topic>Tin</topic><topic>TIN OXIDES</topic><topic>Titanium dioxide</topic><topic>TITANIUM OXIDES</topic><topic>VISIBLE RADIATION</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ho</creatorcontrib><creatorcontrib>Lo, Yu-Jen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ho</au><au>Lo, Yu-Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells</atitle><jtitle>Solar energy</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>84</volume><issue>10</issue><spage>1833</spage><epage>1837</epage><pages>1833-1837</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>This study employs chlorophyll extract from pomegranate leaf and anthocyanin extract from mulberry fruit as the natural dyes for a dye-sensitized solar cell (DSSC). A self-developed nanofluid synthesis system is employed to prepare TiO
2 nanofluid with an average particle size of 25
nm. Electrophoresis deposition was performed to deposit TiO
2 nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO
2 thin film with the thickness of 11
μm. Furthermore, this TiO
2 thin film was sintered at 450
°C to enhance the thin film compactness. Sputtering was used to prepare counter electrode by depositing Pt thin film on FTO glass at a thickness of 20
nm. The electrodes, electrolyte (
I
3
-
), and dyes were assembled into a cell module and illuminated by a light source simulating AM 1.5 with a light strength of 100
mW/cm
2 to measure the photoelectric conversion efficiency of the prepared DSSCs. According to experimental results, the conversion efficiency of the DSSCs prepared by chlorophyll dyes from pomegranate leaf extract is 0.597%, with open-circuit voltage (
V
OC
) of 0.56
V, short-circuit current density (
J
SC
) of 2.05
mA/cm
2, and fill factor (FF) of 0.52. The conversion efficiency of the DSSCs prepared by anthocyanin dyes from mulberry extract is 0.548%, with
V
OC
of 0.555
V and
J
SC
of 1.89
mA/cm
2 and FF of 0.53. The conversion efficiency is 0.722% for chlorophyll and anthocyanin as the dye mixture, with
V
OC
of 0.53
V,
J
SC
of 2.8
mA/cm
2, and FF of 0.49.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2010.07.009</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 2010-10, Vol.84 (10), p.1833-1837 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_osti_scitechconnect_21350414 |
source | Access via ScienceDirect (Elsevier) |
subjects | Anthocyanin Anthocyanins Applied sciences CHLOROPHYLL Chlorophylls CONVERSION CURRENT DENSITY CYANINE DYES DEPOSITION Dye cocktails Dye-sensitized solar cells Dyes EFFICIENCY ELECTRIC CURRENTS ELECTRIC POTENTIAL ELECTRODES ELECTROPHORESIS Energy Exact sciences and technology Extraction processes FILL FACTORS FRUITS GLASS INDIUM OXIDES LEAVES MIXTURES Nanoparticles Nanostructure NANOSTRUCTURES Natural dyes Natural energy PARTICLE SIZE PARTICLES Photovoltaic cells Photovoltaic conversion Pomegranates SENSITIZERS SOLAR CELLS Solar cells. Photoelectrochemical cells SOLAR ENERGY SPUTTERING Studies SYNTHESIS TEMPERATURE RANGE 0400-1000 K THIN FILMS Tin TIN OXIDES Titanium dioxide TITANIUM OXIDES VISIBLE RADIATION Volatile organic compounds |
title | Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pomegranate%20leaves%20and%20mulberry%20fruit%20as%20natural%20sensitizers%20for%20dye-sensitized%20solar%20cells&rft.jtitle=Solar%20energy&rft.au=Chang,%20Ho&rft.date=2010-10-01&rft.volume=84&rft.issue=10&rft.spage=1833&rft.epage=1837&rft.pages=1833-1837&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2010.07.009&rft_dat=%3Cproquest_osti_%3E1671287164%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750312749&rft_id=info:pmid/&rft_els_id=S0038092X10002446&rfr_iscdi=true |