Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its manage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2010-10, Vol.84 (10), p.1772-1781
Hauptverfasser: Martín, Luis, Zarzalejo, Luis F., Polo, Jesús, Navarro, Ana, Marchante, Ruth, Cony, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1781
container_issue 10
container_start_page 1772
container_title Solar energy
container_volume 84
creator Martín, Luis
Zarzalejo, Luis F.
Polo, Jesús
Navarro, Ana
Marchante, Ruth
Cony, Marco
description Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models.
doi_str_mv 10.1016/j.solener.2010.07.002
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21350408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X10002379</els_id><sourcerecordid>2136631091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-d92ddad07cccded93ad60f12396dfb79154e6829a27d72fc7960d4348ee178393</originalsourceid><addsrcrecordid>eNqFkVGL1DAUhYMoOK7-BCEoPna8Sdqm9UWWRd2FBX1Q8C1kktvZDJ2m5maU-Qn-a1M7-OpTIPnOuSf3MPZSwFaAaN8ethRHnDBtJZQ70FsA-YhtRK1FJWSjH7MNgOoq6OX3p-wZ0QFAaNHpDfv9JaEPLoc48Tjw_Rh3duTFzyYeUrI-2Mkh31lCzwuTwxE5YQpI3E52PFOgd_x6nsfg7F-XHC_y_IDpWMzm-AsTn0c7ZeJLzP2Zzyn60zp1eZjCtH_Ongx2JHxxOa_Yt48fvt7cVvefP93dXN9XrlZNrnwvvbcetHPOo--V9S0MQqq-9cNO96Kpse1kb6X2Wg5O9y34WtUdotCd6tUVe736RsrBkAsZ3YOL04QuGylUAzV0hXq1UiXpjxNSNod4SuXDZHQDSsiulQVqVsilSJRwMHMKR5vORoBZqjEHc6nGLNUY0KZUU3RvLuaWnB2HVHYc6J9YKtk2SuvCvV85LPv4GYpLiYulDx_SktbH8J9JfwCp5qnJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750312862</pqid></control><display><type>article</type><title>Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning</title><source>Elsevier ScienceDirect Journals</source><creator>Martín, Luis ; Zarzalejo, Luis F. ; Polo, Jesús ; Navarro, Ana ; Marchante, Ruth ; Cony, Marco</creator><creatorcontrib>Martín, Luis ; Zarzalejo, Luis F. ; Polo, Jesús ; Navarro, Ana ; Marchante, Ruth ; Cony, Marco</creatorcontrib><description>Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2010.07.002</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; CAPACITY ; Clearness index ; Combined power plants and total energy systems ; COMPARATIVE EVALUATIONS ; Electric power plants ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electricity generation ; Energy ; Energy economics ; Energy meteorology ; Exact sciences and technology ; FORECASTING ; FUZZY LOGIC ; Lost component ; MANAGEMENT ; Natural energy ; NEURAL NETWORKS ; Non classical power plants ; OPERATION ; Photovoltaic conversion ; Photovoltaic power plants ; PLANNING ; POWER GENERATION ; Power plants ; RADIANT FLUX DENSITY ; Simulation ; SOLAR ENERGY ; SOLAR RADIATION ; Solar radiation forecasting ; Solar thermal conversion ; Solar thermal energy ; SOLAR THERMAL POWER PLANTS ; SPAIN ; STATISTICAL MODELS ; TIME RESOLUTION ; TIME-SERIES ANALYSIS ; VALIDATION</subject><ispartof>Solar energy, 2010-10, Vol.84 (10), p.1772-1781</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-d92ddad07cccded93ad60f12396dfb79154e6829a27d72fc7960d4348ee178393</citedby><cites>FETCH-LOGICAL-c435t-d92ddad07cccded93ad60f12396dfb79154e6829a27d72fc7960d4348ee178393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0038092X10002379$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23265377$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21350408$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Martín, Luis</creatorcontrib><creatorcontrib>Zarzalejo, Luis F.</creatorcontrib><creatorcontrib>Polo, Jesús</creatorcontrib><creatorcontrib>Navarro, Ana</creatorcontrib><creatorcontrib>Marchante, Ruth</creatorcontrib><creatorcontrib>Cony, Marco</creatorcontrib><title>Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning</title><title>Solar energy</title><description>Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models.</description><subject>Applied sciences</subject><subject>CAPACITY</subject><subject>Clearness index</subject><subject>Combined power plants and total energy systems</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Electric power plants</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electricity generation</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Energy meteorology</subject><subject>Exact sciences and technology</subject><subject>FORECASTING</subject><subject>FUZZY LOGIC</subject><subject>Lost component</subject><subject>MANAGEMENT</subject><subject>Natural energy</subject><subject>NEURAL NETWORKS</subject><subject>Non classical power plants</subject><subject>OPERATION</subject><subject>Photovoltaic conversion</subject><subject>Photovoltaic power plants</subject><subject>PLANNING</subject><subject>POWER GENERATION</subject><subject>Power plants</subject><subject>RADIANT FLUX DENSITY</subject><subject>Simulation</subject><subject>SOLAR ENERGY</subject><subject>SOLAR RADIATION</subject><subject>Solar radiation forecasting</subject><subject>Solar thermal conversion</subject><subject>Solar thermal energy</subject><subject>SOLAR THERMAL POWER PLANTS</subject><subject>SPAIN</subject><subject>STATISTICAL MODELS</subject><subject>TIME RESOLUTION</subject><subject>TIME-SERIES ANALYSIS</subject><subject>VALIDATION</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkVGL1DAUhYMoOK7-BCEoPna8Sdqm9UWWRd2FBX1Q8C1kktvZDJ2m5maU-Qn-a1M7-OpTIPnOuSf3MPZSwFaAaN8ethRHnDBtJZQ70FsA-YhtRK1FJWSjH7MNgOoq6OX3p-wZ0QFAaNHpDfv9JaEPLoc48Tjw_Rh3duTFzyYeUrI-2Mkh31lCzwuTwxE5YQpI3E52PFOgd_x6nsfg7F-XHC_y_IDpWMzm-AsTn0c7ZeJLzP2Zzyn60zp1eZjCtH_Ongx2JHxxOa_Yt48fvt7cVvefP93dXN9XrlZNrnwvvbcetHPOo--V9S0MQqq-9cNO96Kpse1kb6X2Wg5O9y34WtUdotCd6tUVe736RsrBkAsZ3YOL04QuGylUAzV0hXq1UiXpjxNSNod4SuXDZHQDSsiulQVqVsilSJRwMHMKR5vORoBZqjEHc6nGLNUY0KZUU3RvLuaWnB2HVHYc6J9YKtk2SuvCvV85LPv4GYpLiYulDx_SktbH8J9JfwCp5qnJ</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Martín, Luis</creator><creator>Zarzalejo, Luis F.</creator><creator>Polo, Jesús</creator><creator>Navarro, Ana</creator><creator>Marchante, Ruth</creator><creator>Cony, Marco</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20101001</creationdate><title>Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning</title><author>Martín, Luis ; Zarzalejo, Luis F. ; Polo, Jesús ; Navarro, Ana ; Marchante, Ruth ; Cony, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-d92ddad07cccded93ad60f12396dfb79154e6829a27d72fc7960d4348ee178393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>CAPACITY</topic><topic>Clearness index</topic><topic>Combined power plants and total energy systems</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Electric power plants</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electricity generation</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Energy meteorology</topic><topic>Exact sciences and technology</topic><topic>FORECASTING</topic><topic>FUZZY LOGIC</topic><topic>Lost component</topic><topic>MANAGEMENT</topic><topic>Natural energy</topic><topic>NEURAL NETWORKS</topic><topic>Non classical power plants</topic><topic>OPERATION</topic><topic>Photovoltaic conversion</topic><topic>Photovoltaic power plants</topic><topic>PLANNING</topic><topic>POWER GENERATION</topic><topic>Power plants</topic><topic>RADIANT FLUX DENSITY</topic><topic>Simulation</topic><topic>SOLAR ENERGY</topic><topic>SOLAR RADIATION</topic><topic>Solar radiation forecasting</topic><topic>Solar thermal conversion</topic><topic>Solar thermal energy</topic><topic>SOLAR THERMAL POWER PLANTS</topic><topic>SPAIN</topic><topic>STATISTICAL MODELS</topic><topic>TIME RESOLUTION</topic><topic>TIME-SERIES ANALYSIS</topic><topic>VALIDATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín, Luis</creatorcontrib><creatorcontrib>Zarzalejo, Luis F.</creatorcontrib><creatorcontrib>Polo, Jesús</creatorcontrib><creatorcontrib>Navarro, Ana</creatorcontrib><creatorcontrib>Marchante, Ruth</creatorcontrib><creatorcontrib>Cony, Marco</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín, Luis</au><au>Zarzalejo, Luis F.</au><au>Polo, Jesús</au><au>Navarro, Ana</au><au>Marchante, Ruth</au><au>Cony, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning</atitle><jtitle>Solar energy</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>84</volume><issue>10</issue><spage>1772</spage><epage>1781</epage><pages>1772-1781</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2010.07.002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2010-10, Vol.84 (10), p.1772-1781
issn 0038-092X
1471-1257
language eng
recordid cdi_osti_scitechconnect_21350408
source Elsevier ScienceDirect Journals
subjects Applied sciences
CAPACITY
Clearness index
Combined power plants and total energy systems
COMPARATIVE EVALUATIONS
Electric power plants
Electrical engineering. Electrical power engineering
Electrical power engineering
Electricity generation
Energy
Energy economics
Energy meteorology
Exact sciences and technology
FORECASTING
FUZZY LOGIC
Lost component
MANAGEMENT
Natural energy
NEURAL NETWORKS
Non classical power plants
OPERATION
Photovoltaic conversion
Photovoltaic power plants
PLANNING
POWER GENERATION
Power plants
RADIANT FLUX DENSITY
Simulation
SOLAR ENERGY
SOLAR RADIATION
Solar radiation forecasting
Solar thermal conversion
Solar thermal energy
SOLAR THERMAL POWER PLANTS
SPAIN
STATISTICAL MODELS
TIME RESOLUTION
TIME-SERIES ANALYSIS
VALIDATION
title Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20global%20solar%20irradiance%20based%20on%20time%20series%20analysis:%20Application%20to%20solar%20thermal%20power%20plants%20energy%20production%20planning&rft.jtitle=Solar%20energy&rft.au=Mart%C3%ADn,%20Luis&rft.date=2010-10-01&rft.volume=84&rft.issue=10&rft.spage=1772&rft.epage=1781&rft.pages=1772-1781&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2010.07.002&rft_dat=%3Cproquest_osti_%3E2136631091%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750312862&rft_id=info:pmid/&rft_els_id=S0038092X10002379&rfr_iscdi=true