Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure CH{sub 4}-O{sub 2}-N{sub 2} and C{sub 2}H{sub 2}-O{sub 2}-N{sub 2} flames
We report an experimental and modeling study on prompt-NO formation in low-pressure (5.3 kPa) premixed flames. Special emphasis is given to the quantitative detection (and prediction) of NCN, whose role in prompt-NO formation has recently been confirmed in alkane flames. Here a rich ({phi} = 1.25) C...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2010-10, Vol.157 (10) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Combustion and flame |
container_volume | 157 |
creator | Lamoureux, N. Desgroux, P. El Bakali, A. Pauwels, J.F. |
description | We report an experimental and modeling study on prompt-NO formation in low-pressure (5.3 kPa) premixed flames. Special emphasis is given to the quantitative detection (and prediction) of NCN, whose role in prompt-NO formation has recently been confirmed in alkane flames. Here a rich ({phi} = 1.25) CH{sub 4}-O{sub 2}-N{sub 2} flame and rich ({phi} = 1.25) and stoichiometric C{sub 2}H{sub 2}-O{sub 2}-N{sub 2} flames have been investigated. Absolute concentration profiles of CH and NCN radicals and NO species are obtained by combining laser-induced fluorescence (LIF) and cavity ring-down spectroscopy (CRDS). Temperature profile is determined in each flame using OH and NO-LIF thermometry. Flame modeling is performed to determine the role of NCN in prompt-NO formation and to test the capacity of the present chemical mechanisms to predict some intermediate species involved in prompt-NO formation. The methane flame is modeled using GDFkin registered 3.0{sub N}CN mechanism [El Bakali et al., Fuel 85 (2006), 896-909]. The acetylene flames are modeled using the Lindstedt and Skevis C/H/O mechanism [Lindstedt and Skevis, Proc. Combust. Inst. 28 (2000), 1801-1807], completed by the submechanism issued from GDFkin registered 3.0{sub N}CN for nitrogen chemistry. This submechanism includes the initiation reaction CH + N{sub 2} = NCN + H. Rate constants of NO-sensitive reactions of the submechanism are modified by taking into account the recent literature. In particular, the C{sub 2}O route could be explored thanks to a significant presence of C{sub 2}O in acetylene flames. Globally, the modified submechanism of nitrogen chemistry coupled with the two hydrocarbon mechanisms leads to a satisfying prediction of NCN and NO mole fraction profiles, even though refinements of rate constant determination is still required. The role of NCN in prompt-NO formation in acetylene flames is demonstrated. (author) |
doi_str_mv | 10.1016/J.COMBUSTFLAME.2010.03.013 |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_21350370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21350370</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_213503703</originalsourceid><addsrcrecordid>eNqNjctOwzAQRS0EEuHxDxasHcZ208ISrFQRosmCsq6C66hBfkS2I0Cof8OHklZh1U1Xc-49VxqEbiikFOj07jkV1eLp7XU5f3lc5CmDQQBPgfITlNAsmxL2wOgpSmAwhNF7OEcXIXwAwGzCeYJ-869O-dYoG2uNa7vGtjdDIYcUYr_-xq7BcaOwd1rtuBQlbi3uvDNdJGWFG-dNHVtnd7V2n6TzKoTeKyyKn9C_48mWVHtgW1KOsP8kxlD828NZo2ujwhU6a2od1PV4L9HtPF-KgrgQ21WQbVRyI521SsYVozwDPgN-3OoPOjVlLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure CH{sub 4}-O{sub 2}-N{sub 2} and C{sub 2}H{sub 2}-O{sub 2}-N{sub 2} flames</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lamoureux, N. ; Desgroux, P. ; El Bakali, A. ; Pauwels, J.F.</creator><creatorcontrib>Lamoureux, N. ; Desgroux, P. ; El Bakali, A. ; Pauwels, J.F.</creatorcontrib><description>We report an experimental and modeling study on prompt-NO formation in low-pressure (5.3 kPa) premixed flames. Special emphasis is given to the quantitative detection (and prediction) of NCN, whose role in prompt-NO formation has recently been confirmed in alkane flames. Here a rich ({phi} = 1.25) CH{sub 4}-O{sub 2}-N{sub 2} flame and rich ({phi} = 1.25) and stoichiometric C{sub 2}H{sub 2}-O{sub 2}-N{sub 2} flames have been investigated. Absolute concentration profiles of CH and NCN radicals and NO species are obtained by combining laser-induced fluorescence (LIF) and cavity ring-down spectroscopy (CRDS). Temperature profile is determined in each flame using OH and NO-LIF thermometry. Flame modeling is performed to determine the role of NCN in prompt-NO formation and to test the capacity of the present chemical mechanisms to predict some intermediate species involved in prompt-NO formation. The methane flame is modeled using GDFkin registered 3.0{sub N}CN mechanism [El Bakali et al., Fuel 85 (2006), 896-909]. The acetylene flames are modeled using the Lindstedt and Skevis C/H/O mechanism [Lindstedt and Skevis, Proc. Combust. Inst. 28 (2000), 1801-1807], completed by the submechanism issued from GDFkin registered 3.0{sub N}CN for nitrogen chemistry. This submechanism includes the initiation reaction CH + N{sub 2} = NCN + H. Rate constants of NO-sensitive reactions of the submechanism are modified by taking into account the recent literature. In particular, the C{sub 2}O route could be explored thanks to a significant presence of C{sub 2}O in acetylene flames. Globally, the modified submechanism of nitrogen chemistry coupled with the two hydrocarbon mechanisms leads to a satisfying prediction of NCN and NO mole fraction profiles, even though refinements of rate constant determination is still required. The role of NCN in prompt-NO formation in acetylene flames is demonstrated. (author)</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/J.COMBUSTFLAME.2010.03.013</identifier><language>eng</language><publisher>United States</publisher><subject>ACETYLENE ; Cavity ring-down spectroscopy ; COMBUSTION KINETICS ; CYANIDES ; DETECTION ; FLAMES ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Laser-induced fluorescence ; METHANE ; NITRIC OXIDE ; NITROGEN ; NITROGEN COMPOUNDS ; NUMERICAL ANALYSIS ; OXYGEN ; PRESSURE RANGE KILO PA ; Prompt-NO ; RADICALS ; REACTION INTERMEDIATES ; SIMULATION ; STOICHIOMETRY ; TEMPERATURE DISTRIBUTION</subject><ispartof>Combustion and flame, 2010-10, Vol.157 (10)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21350370$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamoureux, N.</creatorcontrib><creatorcontrib>Desgroux, P.</creatorcontrib><creatorcontrib>El Bakali, A.</creatorcontrib><creatorcontrib>Pauwels, J.F.</creatorcontrib><title>Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure CH{sub 4}-O{sub 2}-N{sub 2} and C{sub 2}H{sub 2}-O{sub 2}-N{sub 2} flames</title><title>Combustion and flame</title><description>We report an experimental and modeling study on prompt-NO formation in low-pressure (5.3 kPa) premixed flames. Special emphasis is given to the quantitative detection (and prediction) of NCN, whose role in prompt-NO formation has recently been confirmed in alkane flames. Here a rich ({phi} = 1.25) CH{sub 4}-O{sub 2}-N{sub 2} flame and rich ({phi} = 1.25) and stoichiometric C{sub 2}H{sub 2}-O{sub 2}-N{sub 2} flames have been investigated. Absolute concentration profiles of CH and NCN radicals and NO species are obtained by combining laser-induced fluorescence (LIF) and cavity ring-down spectroscopy (CRDS). Temperature profile is determined in each flame using OH and NO-LIF thermometry. Flame modeling is performed to determine the role of NCN in prompt-NO formation and to test the capacity of the present chemical mechanisms to predict some intermediate species involved in prompt-NO formation. The methane flame is modeled using GDFkin registered 3.0{sub N}CN mechanism [El Bakali et al., Fuel 85 (2006), 896-909]. The acetylene flames are modeled using the Lindstedt and Skevis C/H/O mechanism [Lindstedt and Skevis, Proc. Combust. Inst. 28 (2000), 1801-1807], completed by the submechanism issued from GDFkin registered 3.0{sub N}CN for nitrogen chemistry. This submechanism includes the initiation reaction CH + N{sub 2} = NCN + H. Rate constants of NO-sensitive reactions of the submechanism are modified by taking into account the recent literature. In particular, the C{sub 2}O route could be explored thanks to a significant presence of C{sub 2}O in acetylene flames. Globally, the modified submechanism of nitrogen chemistry coupled with the two hydrocarbon mechanisms leads to a satisfying prediction of NCN and NO mole fraction profiles, even though refinements of rate constant determination is still required. The role of NCN in prompt-NO formation in acetylene flames is demonstrated. (author)</description><subject>ACETYLENE</subject><subject>Cavity ring-down spectroscopy</subject><subject>COMBUSTION KINETICS</subject><subject>CYANIDES</subject><subject>DETECTION</subject><subject>FLAMES</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Laser-induced fluorescence</subject><subject>METHANE</subject><subject>NITRIC OXIDE</subject><subject>NITROGEN</subject><subject>NITROGEN COMPOUNDS</subject><subject>NUMERICAL ANALYSIS</subject><subject>OXYGEN</subject><subject>PRESSURE RANGE KILO PA</subject><subject>Prompt-NO</subject><subject>RADICALS</subject><subject>REACTION INTERMEDIATES</subject><subject>SIMULATION</subject><subject>STOICHIOMETRY</subject><subject>TEMPERATURE DISTRIBUTION</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNjctOwzAQRS0EEuHxDxasHcZ208ISrFQRosmCsq6C66hBfkS2I0Cof8OHklZh1U1Xc-49VxqEbiikFOj07jkV1eLp7XU5f3lc5CmDQQBPgfITlNAsmxL2wOgpSmAwhNF7OEcXIXwAwGzCeYJ-869O-dYoG2uNa7vGtjdDIYcUYr_-xq7BcaOwd1rtuBQlbi3uvDNdJGWFG-dNHVtnd7V2n6TzKoTeKyyKn9C_48mWVHtgW1KOsP8kxlD828NZo2ujwhU6a2od1PV4L9HtPF-KgrgQ21WQbVRyI521SsYVozwDPgN-3OoPOjVlLw</recordid><startdate>20101015</startdate><enddate>20101015</enddate><creator>Lamoureux, N.</creator><creator>Desgroux, P.</creator><creator>El Bakali, A.</creator><creator>Pauwels, J.F.</creator><scope>OTOTI</scope></search><sort><creationdate>20101015</creationdate><title>Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure CH{sub 4}-O{sub 2}-N{sub 2} and C{sub 2}H{sub 2}-O{sub 2}-N{sub 2} flames</title><author>Lamoureux, N. ; Desgroux, P. ; El Bakali, A. ; Pauwels, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_213503703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ACETYLENE</topic><topic>Cavity ring-down spectroscopy</topic><topic>COMBUSTION KINETICS</topic><topic>CYANIDES</topic><topic>DETECTION</topic><topic>FLAMES</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Laser-induced fluorescence</topic><topic>METHANE</topic><topic>NITRIC OXIDE</topic><topic>NITROGEN</topic><topic>NITROGEN COMPOUNDS</topic><topic>NUMERICAL ANALYSIS</topic><topic>OXYGEN</topic><topic>PRESSURE RANGE KILO PA</topic><topic>Prompt-NO</topic><topic>RADICALS</topic><topic>REACTION INTERMEDIATES</topic><topic>SIMULATION</topic><topic>STOICHIOMETRY</topic><topic>TEMPERATURE DISTRIBUTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamoureux, N.</creatorcontrib><creatorcontrib>Desgroux, P.</creatorcontrib><creatorcontrib>El Bakali, A.</creatorcontrib><creatorcontrib>Pauwels, J.F.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamoureux, N.</au><au>Desgroux, P.</au><au>El Bakali, A.</au><au>Pauwels, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure CH{sub 4}-O{sub 2}-N{sub 2} and C{sub 2}H{sub 2}-O{sub 2}-N{sub 2} flames</atitle><jtitle>Combustion and flame</jtitle><date>2010-10-15</date><risdate>2010</risdate><volume>157</volume><issue>10</issue><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>We report an experimental and modeling study on prompt-NO formation in low-pressure (5.3 kPa) premixed flames. Special emphasis is given to the quantitative detection (and prediction) of NCN, whose role in prompt-NO formation has recently been confirmed in alkane flames. Here a rich ({phi} = 1.25) CH{sub 4}-O{sub 2}-N{sub 2} flame and rich ({phi} = 1.25) and stoichiometric C{sub 2}H{sub 2}-O{sub 2}-N{sub 2} flames have been investigated. Absolute concentration profiles of CH and NCN radicals and NO species are obtained by combining laser-induced fluorescence (LIF) and cavity ring-down spectroscopy (CRDS). Temperature profile is determined in each flame using OH and NO-LIF thermometry. Flame modeling is performed to determine the role of NCN in prompt-NO formation and to test the capacity of the present chemical mechanisms to predict some intermediate species involved in prompt-NO formation. The methane flame is modeled using GDFkin registered 3.0{sub N}CN mechanism [El Bakali et al., Fuel 85 (2006), 896-909]. The acetylene flames are modeled using the Lindstedt and Skevis C/H/O mechanism [Lindstedt and Skevis, Proc. Combust. Inst. 28 (2000), 1801-1807], completed by the submechanism issued from GDFkin registered 3.0{sub N}CN for nitrogen chemistry. This submechanism includes the initiation reaction CH + N{sub 2} = NCN + H. Rate constants of NO-sensitive reactions of the submechanism are modified by taking into account the recent literature. In particular, the C{sub 2}O route could be explored thanks to a significant presence of C{sub 2}O in acetylene flames. Globally, the modified submechanism of nitrogen chemistry coupled with the two hydrocarbon mechanisms leads to a satisfying prediction of NCN and NO mole fraction profiles, even though refinements of rate constant determination is still required. The role of NCN in prompt-NO formation in acetylene flames is demonstrated. (author)</abstract><cop>United States</cop><doi>10.1016/J.COMBUSTFLAME.2010.03.013</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2010-10, Vol.157 (10) |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_osti_scitechconnect_21350370 |
source | Elsevier ScienceDirect Journals Complete |
subjects | ACETYLENE Cavity ring-down spectroscopy COMBUSTION KINETICS CYANIDES DETECTION FLAMES INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Laser-induced fluorescence METHANE NITRIC OXIDE NITROGEN NITROGEN COMPOUNDS NUMERICAL ANALYSIS OXYGEN PRESSURE RANGE KILO PA Prompt-NO RADICALS REACTION INTERMEDIATES SIMULATION STOICHIOMETRY TEMPERATURE DISTRIBUTION |
title | Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure CH{sub 4}-O{sub 2}-N{sub 2} and C{sub 2}H{sub 2}-O{sub 2}-N{sub 2} flames |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20study%20of%20the%20role%20of%20NCN%20in%20prompt-NO%20formation%20in%20low-pressure%20CH%7Bsub%204%7D-O%7Bsub%202%7D-N%7Bsub%202%7D%20and%20C%7Bsub%202%7DH%7Bsub%202%7D-O%7Bsub%202%7D-N%7Bsub%202%7D%20flames&rft.jtitle=Combustion%20and%20flame&rft.au=Lamoureux,%20N.&rft.date=2010-10-15&rft.volume=157&rft.issue=10&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/J.COMBUSTFLAME.2010.03.013&rft_dat=%3Costi%3E21350370%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |