Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals

The compressive strengths and structures of composites of aluminosilicate geopolymer with the synthetic cement minerals C 3S, β-C 2S, C 3A and commercial OPC were investigated. All the composites showed lower strengths than the geopolymer and OPC paste alone. X-ray diffraction, 29Si and 27Al MAS NMR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cement and concrete research 2010-05, Vol.40 (5), p.787-794
Hauptverfasser: Tailby, Jonathan, MacKenzie, Kenneth J.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 794
container_issue 5
container_start_page 787
container_title Cement and concrete research
container_volume 40
creator Tailby, Jonathan
MacKenzie, Kenneth J.D.
description The compressive strengths and structures of composites of aluminosilicate geopolymer with the synthetic cement minerals C 3S, β-C 2S, C 3A and commercial OPC were investigated. All the composites showed lower strengths than the geopolymer and OPC paste alone. X-ray diffraction, 29Si and 27Al MAS NMR and SEM/EDS observations indicate that hydration of the cement minerals and OPC is hindered in the presence of geopolymer, even though sufficient water was present in the mix for hydration to occur. In the absence of SEM evidence for the formation of an impervious layer around the cement mineral grains, the poor strength development is suggested to be due to the retarded development of C–S–H because of the preferential removal from the system of available Si because geopolymer formation is more rapid than the hydration of the cement minerals. This possibility is supported by experiments in which the rate of geopolymer formation is retarded by the substitution of potassium for sodium, by the reduction of the alkali content of the geopolymer paste or by the addition of borate. In all these cases the strength of the OPC–geopolymer composite was increased, particularly by the combination of the borate additive with the potassium geopolymer, producing an OPC–geopolymer composite stronger than hydrated OPC paste alone.
doi_str_mv 10.1016/j.cemconres.2009.12.003
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21344763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008884609003494</els_id><sourcerecordid>753749285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-f978be1db11f46b19f37aa5d17b7cd871702d8dacdcfc3d681fef5bf736eeffc3</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhS1EJS6FZyASQqwS_JPEzrKqoEWqBBKwthx7zPVVEgfbAXXTZ2fCrbplNbLnm5kzcwh5w2jDKOs_nBoLs41LgtxwSoeG8YZS8YwcmJKiFkOrnpMDpVTVSrX9C_Iy5xM-ey7UgTx8K2mzZUtQmcVVM9ijWYI1U7WmuEIqAXIVfWWmbQ5LzGHCZIHqJ8Q1TvczpMrGecVEQfBPKMfqa0xl2puhLljKv76hZOSWXELZ9j_sBclM-RW58Bjg9WO8JD8-ffx-fVvffbn5fH11V9uWdqX2g1QjMDcy5tt-ZIMX0pjOMTlK65RkknKnnLHOeitcr5gH341eih7A49cleXvuG1GCzhbV2iMKWsAWzZloW9kLpN6fKdz91wa56DlkCxNuA3HLWnZCtgNXHZLyTNoUc07g9ZrCbNK9ZlTvtuiTfrJF77ZoxjXagpXvHmeYjGf2ySw25KdyzjvVs5Yjd3XmAM_yO0DaVcNiwYW0i3Yx_HfWX6TPrKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753749285</pqid></control><display><type>article</type><title>Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tailby, Jonathan ; MacKenzie, Kenneth J.D.</creator><creatorcontrib>Tailby, Jonathan ; MacKenzie, Kenneth J.D.</creatorcontrib><description>The compressive strengths and structures of composites of aluminosilicate geopolymer with the synthetic cement minerals C 3S, β-C 2S, C 3A and commercial OPC were investigated. All the composites showed lower strengths than the geopolymer and OPC paste alone. X-ray diffraction, 29Si and 27Al MAS NMR and SEM/EDS observations indicate that hydration of the cement minerals and OPC is hindered in the presence of geopolymer, even though sufficient water was present in the mix for hydration to occur. In the absence of SEM evidence for the formation of an impervious layer around the cement mineral grains, the poor strength development is suggested to be due to the retarded development of C–S–H because of the preferential removal from the system of available Si because geopolymer formation is more rapid than the hydration of the cement minerals. This possibility is supported by experiments in which the rate of geopolymer formation is retarded by the substitution of potassium for sodium, by the reduction of the alkali content of the geopolymer paste or by the addition of borate. In all these cases the strength of the OPC–geopolymer composite was increased, particularly by the combination of the borate additive with the potassium geopolymer, producing an OPC–geopolymer composite stronger than hydrated OPC paste alone.</description><identifier>ISSN: 0008-8846</identifier><identifier>EISSN: 1873-3948</identifier><identifier>DOI: 10.1016/j.cemconres.2009.12.003</identifier><identifier>CODEN: CCNRAI</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>ALKALI METALS ; Aluminosilicates ; Aluminum silicates ; Applied sciences ; BORATES ; BORON COMPOUNDS ; BUILDING MATERIALS ; Buildings. Public works ; Cement concrete constituents ; CEMENTS ; COHERENT SCATTERING ; Composites (E) ; COMPRESSION STRENGTH ; DIFFRACTION ; ELECTRON MICROSCOPY ; ELEMENTS ; Exact sciences and technology ; HYDRATION ; HYDROGEN COMPOUNDS ; LAYERS ; MAGNETIC RESONANCE ; MATERIALS ; MATERIALS SCIENCE ; MECHANICAL PROPERTIES ; Mechanical properties (C) ; METALS ; MICROSCOPY ; MICROSTRUCTURE ; Microstructure (B) ; MINERALS ; NMR ; NUCLEAR MAGNETIC RESONANCE ; OXYGEN COMPOUNDS ; Pastes ; PORTLAND CEMENT ; POTASSIUM ; Process control ; Properties and test methods ; Properties of anhydrous and hydrated cement, test methods ; RESONANCE ; SCANNING ELECTRON MICROSCOPY ; SCATTERING ; SODIUM ; SOLVATION ; Strength ; WATER ; X-RAY DIFFRACTION</subject><ispartof>Cement and concrete research, 2010-05, Vol.40 (5), p.787-794</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-f978be1db11f46b19f37aa5d17b7cd871702d8dacdcfc3d681fef5bf736eeffc3</citedby><cites>FETCH-LOGICAL-c405t-f978be1db11f46b19f37aa5d17b7cd871702d8dacdcfc3d681fef5bf736eeffc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cemconres.2009.12.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22586142$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21344763$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tailby, Jonathan</creatorcontrib><creatorcontrib>MacKenzie, Kenneth J.D.</creatorcontrib><title>Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals</title><title>Cement and concrete research</title><description>The compressive strengths and structures of composites of aluminosilicate geopolymer with the synthetic cement minerals C 3S, β-C 2S, C 3A and commercial OPC were investigated. All the composites showed lower strengths than the geopolymer and OPC paste alone. X-ray diffraction, 29Si and 27Al MAS NMR and SEM/EDS observations indicate that hydration of the cement minerals and OPC is hindered in the presence of geopolymer, even though sufficient water was present in the mix for hydration to occur. In the absence of SEM evidence for the formation of an impervious layer around the cement mineral grains, the poor strength development is suggested to be due to the retarded development of C–S–H because of the preferential removal from the system of available Si because geopolymer formation is more rapid than the hydration of the cement minerals. This possibility is supported by experiments in which the rate of geopolymer formation is retarded by the substitution of potassium for sodium, by the reduction of the alkali content of the geopolymer paste or by the addition of borate. In all these cases the strength of the OPC–geopolymer composite was increased, particularly by the combination of the borate additive with the potassium geopolymer, producing an OPC–geopolymer composite stronger than hydrated OPC paste alone.</description><subject>ALKALI METALS</subject><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Applied sciences</subject><subject>BORATES</subject><subject>BORON COMPOUNDS</subject><subject>BUILDING MATERIALS</subject><subject>Buildings. Public works</subject><subject>Cement concrete constituents</subject><subject>CEMENTS</subject><subject>COHERENT SCATTERING</subject><subject>Composites (E)</subject><subject>COMPRESSION STRENGTH</subject><subject>DIFFRACTION</subject><subject>ELECTRON MICROSCOPY</subject><subject>ELEMENTS</subject><subject>Exact sciences and technology</subject><subject>HYDRATION</subject><subject>HYDROGEN COMPOUNDS</subject><subject>LAYERS</subject><subject>MAGNETIC RESONANCE</subject><subject>MATERIALS</subject><subject>MATERIALS SCIENCE</subject><subject>MECHANICAL PROPERTIES</subject><subject>Mechanical properties (C)</subject><subject>METALS</subject><subject>MICROSCOPY</subject><subject>MICROSTRUCTURE</subject><subject>Microstructure (B)</subject><subject>MINERALS</subject><subject>NMR</subject><subject>NUCLEAR MAGNETIC RESONANCE</subject><subject>OXYGEN COMPOUNDS</subject><subject>Pastes</subject><subject>PORTLAND CEMENT</subject><subject>POTASSIUM</subject><subject>Process control</subject><subject>Properties and test methods</subject><subject>Properties of anhydrous and hydrated cement, test methods</subject><subject>RESONANCE</subject><subject>SCANNING ELECTRON MICROSCOPY</subject><subject>SCATTERING</subject><subject>SODIUM</subject><subject>SOLVATION</subject><subject>Strength</subject><subject>WATER</subject><subject>X-RAY DIFFRACTION</subject><issn>0008-8846</issn><issn>1873-3948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1TAQhS1EJS6FZyASQqwS_JPEzrKqoEWqBBKwthx7zPVVEgfbAXXTZ2fCrbplNbLnm5kzcwh5w2jDKOs_nBoLs41LgtxwSoeG8YZS8YwcmJKiFkOrnpMDpVTVSrX9C_Iy5xM-ey7UgTx8K2mzZUtQmcVVM9ijWYI1U7WmuEIqAXIVfWWmbQ5LzGHCZIHqJ8Q1TvczpMrGecVEQfBPKMfqa0xl2puhLljKv76hZOSWXELZ9j_sBclM-RW58Bjg9WO8JD8-ffx-fVvffbn5fH11V9uWdqX2g1QjMDcy5tt-ZIMX0pjOMTlK65RkknKnnLHOeitcr5gH341eih7A49cleXvuG1GCzhbV2iMKWsAWzZloW9kLpN6fKdz91wa56DlkCxNuA3HLWnZCtgNXHZLyTNoUc07g9ZrCbNK9ZlTvtuiTfrJF77ZoxjXagpXvHmeYjGf2ySw25KdyzjvVs5Yjd3XmAM_yO0DaVcNiwYW0i3Yx_HfWX6TPrKw</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Tailby, Jonathan</creator><creator>MacKenzie, Kenneth J.D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>OTOTI</scope></search><sort><creationdate>20100501</creationdate><title>Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals</title><author>Tailby, Jonathan ; MacKenzie, Kenneth J.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-f978be1db11f46b19f37aa5d17b7cd871702d8dacdcfc3d681fef5bf736eeffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ALKALI METALS</topic><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Applied sciences</topic><topic>BORATES</topic><topic>BORON COMPOUNDS</topic><topic>BUILDING MATERIALS</topic><topic>Buildings. Public works</topic><topic>Cement concrete constituents</topic><topic>CEMENTS</topic><topic>COHERENT SCATTERING</topic><topic>Composites (E)</topic><topic>COMPRESSION STRENGTH</topic><topic>DIFFRACTION</topic><topic>ELECTRON MICROSCOPY</topic><topic>ELEMENTS</topic><topic>Exact sciences and technology</topic><topic>HYDRATION</topic><topic>HYDROGEN COMPOUNDS</topic><topic>LAYERS</topic><topic>MAGNETIC RESONANCE</topic><topic>MATERIALS</topic><topic>MATERIALS SCIENCE</topic><topic>MECHANICAL PROPERTIES</topic><topic>Mechanical properties (C)</topic><topic>METALS</topic><topic>MICROSCOPY</topic><topic>MICROSTRUCTURE</topic><topic>Microstructure (B)</topic><topic>MINERALS</topic><topic>NMR</topic><topic>NUCLEAR MAGNETIC RESONANCE</topic><topic>OXYGEN COMPOUNDS</topic><topic>Pastes</topic><topic>PORTLAND CEMENT</topic><topic>POTASSIUM</topic><topic>Process control</topic><topic>Properties and test methods</topic><topic>Properties of anhydrous and hydrated cement, test methods</topic><topic>RESONANCE</topic><topic>SCANNING ELECTRON MICROSCOPY</topic><topic>SCATTERING</topic><topic>SODIUM</topic><topic>SOLVATION</topic><topic>Strength</topic><topic>WATER</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tailby, Jonathan</creatorcontrib><creatorcontrib>MacKenzie, Kenneth J.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Cement and concrete research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tailby, Jonathan</au><au>MacKenzie, Kenneth J.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals</atitle><jtitle>Cement and concrete research</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>40</volume><issue>5</issue><spage>787</spage><epage>794</epage><pages>787-794</pages><issn>0008-8846</issn><eissn>1873-3948</eissn><coden>CCNRAI</coden><abstract>The compressive strengths and structures of composites of aluminosilicate geopolymer with the synthetic cement minerals C 3S, β-C 2S, C 3A and commercial OPC were investigated. All the composites showed lower strengths than the geopolymer and OPC paste alone. X-ray diffraction, 29Si and 27Al MAS NMR and SEM/EDS observations indicate that hydration of the cement minerals and OPC is hindered in the presence of geopolymer, even though sufficient water was present in the mix for hydration to occur. In the absence of SEM evidence for the formation of an impervious layer around the cement mineral grains, the poor strength development is suggested to be due to the retarded development of C–S–H because of the preferential removal from the system of available Si because geopolymer formation is more rapid than the hydration of the cement minerals. This possibility is supported by experiments in which the rate of geopolymer formation is retarded by the substitution of potassium for sodium, by the reduction of the alkali content of the geopolymer paste or by the addition of borate. In all these cases the strength of the OPC–geopolymer composite was increased, particularly by the combination of the borate additive with the potassium geopolymer, producing an OPC–geopolymer composite stronger than hydrated OPC paste alone.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cemconres.2009.12.003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-8846
ispartof Cement and concrete research, 2010-05, Vol.40 (5), p.787-794
issn 0008-8846
1873-3948
language eng
recordid cdi_osti_scitechconnect_21344763
source Access via ScienceDirect (Elsevier)
subjects ALKALI METALS
Aluminosilicates
Aluminum silicates
Applied sciences
BORATES
BORON COMPOUNDS
BUILDING MATERIALS
Buildings. Public works
Cement concrete constituents
CEMENTS
COHERENT SCATTERING
Composites (E)
COMPRESSION STRENGTH
DIFFRACTION
ELECTRON MICROSCOPY
ELEMENTS
Exact sciences and technology
HYDRATION
HYDROGEN COMPOUNDS
LAYERS
MAGNETIC RESONANCE
MATERIALS
MATERIALS SCIENCE
MECHANICAL PROPERTIES
Mechanical properties (C)
METALS
MICROSCOPY
MICROSTRUCTURE
Microstructure (B)
MINERALS
NMR
NUCLEAR MAGNETIC RESONANCE
OXYGEN COMPOUNDS
Pastes
PORTLAND CEMENT
POTASSIUM
Process control
Properties and test methods
Properties of anhydrous and hydrated cement, test methods
RESONANCE
SCANNING ELECTRON MICROSCOPY
SCATTERING
SODIUM
SOLVATION
Strength
WATER
X-RAY DIFFRACTION
title Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20mechanical%20properties%20of%20aluminosilicate%20geopolymer%20composites%20with%20Portland%20cement%20and%20its%20constituent%20minerals&rft.jtitle=Cement%20and%20concrete%20research&rft.au=Tailby,%20Jonathan&rft.date=2010-05-01&rft.volume=40&rft.issue=5&rft.spage=787&rft.epage=794&rft.pages=787-794&rft.issn=0008-8846&rft.eissn=1873-3948&rft.coden=CCNRAI&rft_id=info:doi/10.1016/j.cemconres.2009.12.003&rft_dat=%3Cproquest_osti_%3E753749285%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753749285&rft_id=info:pmid/&rft_els_id=S0008884609003494&rfr_iscdi=true