The light stability of microcrystalline silicon thin films deposited by VHF–PECVD method

Microcrystalline silicon thin film is deposited under different conditions by plasma enhanced chemical vapor deposition. The light stability with different crystallinity and grain size is studied, and the growth mechanism is analyzed using the scaling behavior of roughening surface evolution. Degrad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2010-08, Vol.84 (8), p.1337-1341
Hauptverfasser: Chen, Yongsheng, Gu, Jinhua, Xu, Yanhua, Lu, Jingxiao, Yang, Shi-e, Gao, Xiaoyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1341
container_issue 8
container_start_page 1337
container_title Solar energy
container_volume 84
creator Chen, Yongsheng
Gu, Jinhua
Xu, Yanhua
Lu, Jingxiao
Yang, Shi-e
Gao, Xiaoyong
description Microcrystalline silicon thin film is deposited under different conditions by plasma enhanced chemical vapor deposition. The light stability with different crystallinity and grain size is studied, and the growth mechanism is analyzed using the scaling behavior of roughening surface evolution. Degradation of photoconductivity mainly depends on crystallinity and grain size, but fundamentally, on the growth mechanism. Materials with high crystallinity and large grain size are more stable under light soaking. With the increasing of deposition pressure and input power, growth process transfers to zero diffusion limit growth mechanism, and films deposited present less grain size and poor light stability.
doi_str_mv 10.1016/j.solener.2010.03.027
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21337875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X1000143X</els_id><sourcerecordid>2078291091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-b9baf9111119e1b832cc7ada3fca603d18202c6705a183b3c6504f84fc058e9b3</originalsourceid><addsrcrecordid>eNqFkcGKFDEQhoMoOK4-ghAU8dRjJenupE8i464rLOhhXcRLSKcTO0M6GZOMMDffwTf0Scw4gwcv5hKofPWn_voRekpgTYD0r7brHL0JJq0p1BqwNVB-D61Iy0lDaMfvoxUAEw0M9PND9CjnLQDhRPAV-nI7G-zd17ngXNTovCsHHC1enE5Rp0Mteu-Cwbk-6RhwmV3A1vkl48nsYnbFTHg84Lvrq18_fn683Ny9xYspc5weowdW-WyenO8L9Onq8nZz3dx8ePd-8-am0S3tSzMOo7IDOZ7BkFEwqjVXk2JWqx7YRAQFqnsOnSKCjUz3HbRWtFZDJ8wwsgv0_KQbc3Ey6zqRnuuowegiKWGMC95V6uWJ2qX4bW9ykYvL2nivgon7LAcioKUAtJLP_iG3cZ9CtSB74LTr-j9y3Qmqa8o5GSt3yS0qHSQBeUxFbuU5FXlMRQKTNZXa9-IsrrJW3iYVtMt_mymDlgwtqdzrE2fq5r67qlKNmaDN5NLR1xTdf376DSFQpSY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>607255675</pqid></control><display><type>article</type><title>The light stability of microcrystalline silicon thin films deposited by VHF–PECVD method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chen, Yongsheng ; Gu, Jinhua ; Xu, Yanhua ; Lu, Jingxiao ; Yang, Shi-e ; Gao, Xiaoyong</creator><creatorcontrib>Chen, Yongsheng ; Gu, Jinhua ; Xu, Yanhua ; Lu, Jingxiao ; Yang, Shi-e ; Gao, Xiaoyong</creatorcontrib><description>Microcrystalline silicon thin film is deposited under different conditions by plasma enhanced chemical vapor deposition. The light stability with different crystallinity and grain size is studied, and the growth mechanism is analyzed using the scaling behavior of roughening surface evolution. Degradation of photoconductivity mainly depends on crystallinity and grain size, but fundamentally, on the growth mechanism. Materials with high crystallinity and large grain size are more stable under light soaking. With the increasing of deposition pressure and input power, growth process transfers to zero diffusion limit growth mechanism, and films deposited present less grain size and poor light stability.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2010.03.027</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>CHEMICAL VAPOR DEPOSITION ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; CRYSTAL GROWTH ; CRYSTAL STRUCTURE ; Crystals ; DIFFUSION ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport phenomena in thin films and low-dimensional structures ; Exact sciences and technology ; GRAIN SIZE ; Light induced degradation ; MATERIALS SCIENCE ; MHZ RANGE ; Microcrystalline silicon ; Photoconduction and photovoltaic effects; photodielectric effects ; PHOTOCONDUCTIVITY ; Physics ; PLASMA ; PRESSURE DEPENDENCE ; SCALING LAWS ; SILICON ; SOLAR ENERGY ; STABILITY ; SURFACES ; Thin film ; THIN FILMS ; VISIBLE RADIATION</subject><ispartof>Solar energy, 2010-08, Vol.84 (8), p.1337-1341</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-b9baf9111119e1b832cc7ada3fca603d18202c6705a183b3c6504f84fc058e9b3</citedby><cites>FETCH-LOGICAL-c426t-b9baf9111119e1b832cc7ada3fca603d18202c6705a183b3c6504f84fc058e9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2010.03.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23041941$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21337875$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yongsheng</creatorcontrib><creatorcontrib>Gu, Jinhua</creatorcontrib><creatorcontrib>Xu, Yanhua</creatorcontrib><creatorcontrib>Lu, Jingxiao</creatorcontrib><creatorcontrib>Yang, Shi-e</creatorcontrib><creatorcontrib>Gao, Xiaoyong</creatorcontrib><title>The light stability of microcrystalline silicon thin films deposited by VHF–PECVD method</title><title>Solar energy</title><description>Microcrystalline silicon thin film is deposited under different conditions by plasma enhanced chemical vapor deposition. The light stability with different crystallinity and grain size is studied, and the growth mechanism is analyzed using the scaling behavior of roughening surface evolution. Degradation of photoconductivity mainly depends on crystallinity and grain size, but fundamentally, on the growth mechanism. Materials with high crystallinity and large grain size are more stable under light soaking. With the increasing of deposition pressure and input power, growth process transfers to zero diffusion limit growth mechanism, and films deposited present less grain size and poor light stability.</description><subject>CHEMICAL VAPOR DEPOSITION</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>CRYSTAL GROWTH</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystals</subject><subject>DIFFUSION</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport phenomena in thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>GRAIN SIZE</subject><subject>Light induced degradation</subject><subject>MATERIALS SCIENCE</subject><subject>MHZ RANGE</subject><subject>Microcrystalline silicon</subject><subject>Photoconduction and photovoltaic effects; photodielectric effects</subject><subject>PHOTOCONDUCTIVITY</subject><subject>Physics</subject><subject>PLASMA</subject><subject>PRESSURE DEPENDENCE</subject><subject>SCALING LAWS</subject><subject>SILICON</subject><subject>SOLAR ENERGY</subject><subject>STABILITY</subject><subject>SURFACES</subject><subject>Thin film</subject><subject>THIN FILMS</subject><subject>VISIBLE RADIATION</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkcGKFDEQhoMoOK4-ghAU8dRjJenupE8i464rLOhhXcRLSKcTO0M6GZOMMDffwTf0Scw4gwcv5hKofPWn_voRekpgTYD0r7brHL0JJq0p1BqwNVB-D61Iy0lDaMfvoxUAEw0M9PND9CjnLQDhRPAV-nI7G-zd17ngXNTovCsHHC1enE5Rp0Mteu-Cwbk-6RhwmV3A1vkl48nsYnbFTHg84Lvrq18_fn683Ny9xYspc5weowdW-WyenO8L9Onq8nZz3dx8ePd-8-am0S3tSzMOo7IDOZ7BkFEwqjVXk2JWqx7YRAQFqnsOnSKCjUz3HbRWtFZDJ8wwsgv0_KQbc3Ey6zqRnuuowegiKWGMC95V6uWJ2qX4bW9ykYvL2nivgon7LAcioKUAtJLP_iG3cZ9CtSB74LTr-j9y3Qmqa8o5GSt3yS0qHSQBeUxFbuU5FXlMRQKTNZXa9-IsrrJW3iYVtMt_mymDlgwtqdzrE2fq5r67qlKNmaDN5NLR1xTdf376DSFQpSY</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Chen, Yongsheng</creator><creator>Gu, Jinhua</creator><creator>Xu, Yanhua</creator><creator>Lu, Jingxiao</creator><creator>Yang, Shi-e</creator><creator>Gao, Xiaoyong</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20100801</creationdate><title>The light stability of microcrystalline silicon thin films deposited by VHF–PECVD method</title><author>Chen, Yongsheng ; Gu, Jinhua ; Xu, Yanhua ; Lu, Jingxiao ; Yang, Shi-e ; Gao, Xiaoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-b9baf9111119e1b832cc7ada3fca603d18202c6705a183b3c6504f84fc058e9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>CHEMICAL VAPOR DEPOSITION</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>CRYSTAL GROWTH</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystals</topic><topic>DIFFUSION</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport phenomena in thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>GRAIN SIZE</topic><topic>Light induced degradation</topic><topic>MATERIALS SCIENCE</topic><topic>MHZ RANGE</topic><topic>Microcrystalline silicon</topic><topic>Photoconduction and photovoltaic effects; photodielectric effects</topic><topic>PHOTOCONDUCTIVITY</topic><topic>Physics</topic><topic>PLASMA</topic><topic>PRESSURE DEPENDENCE</topic><topic>SCALING LAWS</topic><topic>SILICON</topic><topic>SOLAR ENERGY</topic><topic>STABILITY</topic><topic>SURFACES</topic><topic>Thin film</topic><topic>THIN FILMS</topic><topic>VISIBLE RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yongsheng</creatorcontrib><creatorcontrib>Gu, Jinhua</creatorcontrib><creatorcontrib>Xu, Yanhua</creatorcontrib><creatorcontrib>Lu, Jingxiao</creatorcontrib><creatorcontrib>Yang, Shi-e</creatorcontrib><creatorcontrib>Gao, Xiaoyong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yongsheng</au><au>Gu, Jinhua</au><au>Xu, Yanhua</au><au>Lu, Jingxiao</au><au>Yang, Shi-e</au><au>Gao, Xiaoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The light stability of microcrystalline silicon thin films deposited by VHF–PECVD method</atitle><jtitle>Solar energy</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>84</volume><issue>8</issue><spage>1337</spage><epage>1341</epage><pages>1337-1341</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>Microcrystalline silicon thin film is deposited under different conditions by plasma enhanced chemical vapor deposition. The light stability with different crystallinity and grain size is studied, and the growth mechanism is analyzed using the scaling behavior of roughening surface evolution. Degradation of photoconductivity mainly depends on crystallinity and grain size, but fundamentally, on the growth mechanism. Materials with high crystallinity and large grain size are more stable under light soaking. With the increasing of deposition pressure and input power, growth process transfers to zero diffusion limit growth mechanism, and films deposited present less grain size and poor light stability.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2010.03.027</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2010-08, Vol.84 (8), p.1337-1341
issn 0038-092X
1471-1257
language eng
recordid cdi_osti_scitechconnect_21337875
source Access via ScienceDirect (Elsevier)
subjects CHEMICAL VAPOR DEPOSITION
Condensed matter: electronic structure, electrical, magnetic, and optical properties
CRYSTAL GROWTH
CRYSTAL STRUCTURE
Crystals
DIFFUSION
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport phenomena in thin films and low-dimensional structures
Exact sciences and technology
GRAIN SIZE
Light induced degradation
MATERIALS SCIENCE
MHZ RANGE
Microcrystalline silicon
Photoconduction and photovoltaic effects
photodielectric effects
PHOTOCONDUCTIVITY
Physics
PLASMA
PRESSURE DEPENDENCE
SCALING LAWS
SILICON
SOLAR ENERGY
STABILITY
SURFACES
Thin film
THIN FILMS
VISIBLE RADIATION
title The light stability of microcrystalline silicon thin films deposited by VHF–PECVD method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20light%20stability%20of%20microcrystalline%20silicon%20thin%20films%20deposited%20by%20VHF%E2%80%93PECVD%20method&rft.jtitle=Solar%20energy&rft.au=Chen,%20Yongsheng&rft.date=2010-08-01&rft.volume=84&rft.issue=8&rft.spage=1337&rft.epage=1341&rft.pages=1337-1341&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2010.03.027&rft_dat=%3Cproquest_osti_%3E2078291091%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=607255675&rft_id=info:pmid/&rft_els_id=S0038092X1000143X&rfr_iscdi=true