ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines

ITER and future superconducting fusion machines need efficient wall conditioning techniques for routine operation in between shots in the presence of permanent high magnetic field for wall cleaning, surface isotope exchange and to control the in-vessel long term tritium retention. Ion Cyclotron Wall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lyssoivan, A, Koch, R, Noterdaeme, J-M, Philipps, V, Van Eester, D, Vender, M, Rohde, V, Bobkov, V, Sergienko, G, De La Cal, E, Esser, H G, Gauthier, E, Hartmann, D A, Douai, D, Louche, F, Ashikawa, N, Bae, Y D, Beaumont, B, Becoulet, A
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 1
container_start_page 165
container_title
container_volume 1187
creator Lyssoivan, A
Koch, R
Noterdaeme, J-M
Philipps, V
Van Eester, D
Vender, M
Rohde, V
Bobkov, V
Sergienko, G
De La Cal, E
Esser, H G
Gauthier, E
Hartmann, D A
Douai, D
Louche, F
Ashikawa, N
Bae, Y D
Beaumont, B
Becoulet, A
description ITER and future superconducting fusion machines need efficient wall conditioning techniques for routine operation in between shots in the presence of permanent high magnetic field for wall cleaning, surface isotope exchange and to control the in-vessel long term tritium retention. Ion Cyclotron Wall Conditioning (ICWC) based on the ICRF discharge is fully compatible and needs the presence of the magnetic field. The present paper focuses on the principal aspects of the ICWC discharge performance in large-size fusion machines: (i) neutral gas RF breakdown with conventional ICRF heating antennas, (ii) antenna coupling with low density (~10(17) m(-3)) RF plasmas and (iii) ICWC scenarios with improved RF plasma homogeneity in the radial and poloidal directions. All these factors were identified as crucial to achieve an enhanced conditioning effect (e.g. removal rates of selected 'marker' masses). All the observed effects are analyzed in terms of RF plasma wave excitation/absorption and compared with the predictions from 1-D RF full wave and 0-D RF plasma codes. Numerical modeling and empirical extrapolation from the existing machines give good evidence for the feasibility of using ICWC in ITER with the main ICRF antenna.
doi_str_mv 10.1063/1.3273720
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21335698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743146988</sourcerecordid><originalsourceid>FETCH-LOGICAL-o250t-a853f04ea92ed11e7b472ed98ef5486be32da00ad6b0757d715f0914cfbdea013</originalsourceid><addsrcrecordid>eNotj0tPwzAQhC0eEqX0wD-wxIFTyvoVJ9xQoVCpCERBcIscZ0ODgl1ih9-PpXKa1eib0Swh5wzmDHJxxeaCa6E5HJAJU4plOmf5IZmVugAtlASthDwiE4BSZlyKjxNyGsIXAC-1LiakXi1elvTd9D1deNd0sfOuc5_X9HnAgC7STTRxDNS4ht7iL_Z-953sQFs_0OUYxwHpZtzhYFN6tDFlkx1SC300dts5DGfkuDV9wNm_Tsnb8u518ZCtn-5Xi5t15rmCmJlCiRYkmpJjwxjqWup0lQW2ShZ5jYI3BsA0eZ2e0o1mqoWSSdvWDRpgYkou9r0-xK4Ktotot2mWQxsrzoRQeVkk6nJP7Qb_M2KI1XcXLPa9cejHUGkpmExgIf4A1nZnPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>743146988</pqid></control><display><type>conference_proceeding</type><title>ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines</title><source>AIP Journals Complete</source><creator>Lyssoivan, A ; Koch, R ; Noterdaeme, J-M ; Philipps, V ; Van Eester, D ; Vender, M ; Rohde, V ; Bobkov, V ; Sergienko, G ; De La Cal, E ; Esser, H G ; Gauthier, E ; Hartmann, D A ; Douai, D ; Louche, F ; Ashikawa, N ; Bae, Y D ; Beaumont, B ; Becoulet, A</creator><creatorcontrib>Lyssoivan, A ; Koch, R ; Noterdaeme, J-M ; Philipps, V ; Van Eester, D ; Vender, M ; Rohde, V ; Bobkov, V ; Sergienko, G ; De La Cal, E ; Esser, H G ; Gauthier, E ; Hartmann, D A ; Douai, D ; Louche, F ; Ashikawa, N ; Bae, Y D ; Beaumont, B ; Becoulet, A</creatorcontrib><description>ITER and future superconducting fusion machines need efficient wall conditioning techniques for routine operation in between shots in the presence of permanent high magnetic field for wall cleaning, surface isotope exchange and to control the in-vessel long term tritium retention. Ion Cyclotron Wall Conditioning (ICWC) based on the ICRF discharge is fully compatible and needs the presence of the magnetic field. The present paper focuses on the principal aspects of the ICWC discharge performance in large-size fusion machines: (i) neutral gas RF breakdown with conventional ICRF heating antennas, (ii) antenna coupling with low density (~10(17) m(-3)) RF plasmas and (iii) ICWC scenarios with improved RF plasma homogeneity in the radial and poloidal directions. All these factors were identified as crucial to achieve an enhanced conditioning effect (e.g. removal rates of selected 'marker' masses). All the observed effects are analyzed in terms of RF plasma wave excitation/absorption and compared with the predictions from 1-D RF full wave and 0-D RF plasma codes. Numerical modeling and empirical extrapolation from the existing machines give good evidence for the feasibility of using ICWC in ITER with the main ICRF antenna.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 9780735407534</identifier><identifier>ISBN: 0735407533</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.3273720</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ABSORPTION ; ANTENNAS ; COMPUTERIZED SIMULATION ; COUPLING ; EXCITATION ; EXTRAPOLATION ; ICR HEATING ; IONS ; ISOTOPIC EXCHANGE ; ITER TOKAMAK ; MAGNETIC FIELDS ; PLASMA ; PLASMA PRODUCTION ; PLASMA SIMULATION ; PLASMA WAVES ; RETENTION ; RF SYSTEMS ; TRITIUM ; WALL EFFECTS</subject><ispartof>AIP conference proceedings, 2009, Vol.1187 (1), p.165-172</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21335698$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyssoivan, A</creatorcontrib><creatorcontrib>Koch, R</creatorcontrib><creatorcontrib>Noterdaeme, J-M</creatorcontrib><creatorcontrib>Philipps, V</creatorcontrib><creatorcontrib>Van Eester, D</creatorcontrib><creatorcontrib>Vender, M</creatorcontrib><creatorcontrib>Rohde, V</creatorcontrib><creatorcontrib>Bobkov, V</creatorcontrib><creatorcontrib>Sergienko, G</creatorcontrib><creatorcontrib>De La Cal, E</creatorcontrib><creatorcontrib>Esser, H G</creatorcontrib><creatorcontrib>Gauthier, E</creatorcontrib><creatorcontrib>Hartmann, D A</creatorcontrib><creatorcontrib>Douai, D</creatorcontrib><creatorcontrib>Louche, F</creatorcontrib><creatorcontrib>Ashikawa, N</creatorcontrib><creatorcontrib>Bae, Y D</creatorcontrib><creatorcontrib>Beaumont, B</creatorcontrib><creatorcontrib>Becoulet, A</creatorcontrib><title>ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines</title><title>AIP conference proceedings</title><description>ITER and future superconducting fusion machines need efficient wall conditioning techniques for routine operation in between shots in the presence of permanent high magnetic field for wall cleaning, surface isotope exchange and to control the in-vessel long term tritium retention. Ion Cyclotron Wall Conditioning (ICWC) based on the ICRF discharge is fully compatible and needs the presence of the magnetic field. The present paper focuses on the principal aspects of the ICWC discharge performance in large-size fusion machines: (i) neutral gas RF breakdown with conventional ICRF heating antennas, (ii) antenna coupling with low density (~10(17) m(-3)) RF plasmas and (iii) ICWC scenarios with improved RF plasma homogeneity in the radial and poloidal directions. All these factors were identified as crucial to achieve an enhanced conditioning effect (e.g. removal rates of selected 'marker' masses). All the observed effects are analyzed in terms of RF plasma wave excitation/absorption and compared with the predictions from 1-D RF full wave and 0-D RF plasma codes. Numerical modeling and empirical extrapolation from the existing machines give good evidence for the feasibility of using ICWC in ITER with the main ICRF antenna.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ABSORPTION</subject><subject>ANTENNAS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>COUPLING</subject><subject>EXCITATION</subject><subject>EXTRAPOLATION</subject><subject>ICR HEATING</subject><subject>IONS</subject><subject>ISOTOPIC EXCHANGE</subject><subject>ITER TOKAMAK</subject><subject>MAGNETIC FIELDS</subject><subject>PLASMA</subject><subject>PLASMA PRODUCTION</subject><subject>PLASMA SIMULATION</subject><subject>PLASMA WAVES</subject><subject>RETENTION</subject><subject>RF SYSTEMS</subject><subject>TRITIUM</subject><subject>WALL EFFECTS</subject><issn>0094-243X</issn><issn>1551-7616</issn><isbn>9780735407534</isbn><isbn>0735407533</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj0tPwzAQhC0eEqX0wD-wxIFTyvoVJ9xQoVCpCERBcIscZ0ODgl1ih9-PpXKa1eib0Swh5wzmDHJxxeaCa6E5HJAJU4plOmf5IZmVugAtlASthDwiE4BSZlyKjxNyGsIXAC-1LiakXi1elvTd9D1deNd0sfOuc5_X9HnAgC7STTRxDNS4ht7iL_Z-953sQFs_0OUYxwHpZtzhYFN6tDFlkx1SC300dts5DGfkuDV9wNm_Tsnb8u518ZCtn-5Xi5t15rmCmJlCiRYkmpJjwxjqWup0lQW2ShZ5jYI3BsA0eZ2e0o1mqoWSSdvWDRpgYkou9r0-xK4Ktotot2mWQxsrzoRQeVkk6nJP7Qb_M2KI1XcXLPa9cejHUGkpmExgIf4A1nZnPw</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Lyssoivan, A</creator><creator>Koch, R</creator><creator>Noterdaeme, J-M</creator><creator>Philipps, V</creator><creator>Van Eester, D</creator><creator>Vender, M</creator><creator>Rohde, V</creator><creator>Bobkov, V</creator><creator>Sergienko, G</creator><creator>De La Cal, E</creator><creator>Esser, H G</creator><creator>Gauthier, E</creator><creator>Hartmann, D A</creator><creator>Douai, D</creator><creator>Louche, F</creator><creator>Ashikawa, N</creator><creator>Bae, Y D</creator><creator>Beaumont, B</creator><creator>Becoulet, A</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20090101</creationdate><title>ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines</title><author>Lyssoivan, A ; Koch, R ; Noterdaeme, J-M ; Philipps, V ; Van Eester, D ; Vender, M ; Rohde, V ; Bobkov, V ; Sergienko, G ; De La Cal, E ; Esser, H G ; Gauthier, E ; Hartmann, D A ; Douai, D ; Louche, F ; Ashikawa, N ; Bae, Y D ; Beaumont, B ; Becoulet, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o250t-a853f04ea92ed11e7b472ed98ef5486be32da00ad6b0757d715f0914cfbdea013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ABSORPTION</topic><topic>ANTENNAS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>COUPLING</topic><topic>EXCITATION</topic><topic>EXTRAPOLATION</topic><topic>ICR HEATING</topic><topic>IONS</topic><topic>ISOTOPIC EXCHANGE</topic><topic>ITER TOKAMAK</topic><topic>MAGNETIC FIELDS</topic><topic>PLASMA</topic><topic>PLASMA PRODUCTION</topic><topic>PLASMA SIMULATION</topic><topic>PLASMA WAVES</topic><topic>RETENTION</topic><topic>RF SYSTEMS</topic><topic>TRITIUM</topic><topic>WALL EFFECTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyssoivan, A</creatorcontrib><creatorcontrib>Koch, R</creatorcontrib><creatorcontrib>Noterdaeme, J-M</creatorcontrib><creatorcontrib>Philipps, V</creatorcontrib><creatorcontrib>Van Eester, D</creatorcontrib><creatorcontrib>Vender, M</creatorcontrib><creatorcontrib>Rohde, V</creatorcontrib><creatorcontrib>Bobkov, V</creatorcontrib><creatorcontrib>Sergienko, G</creatorcontrib><creatorcontrib>De La Cal, E</creatorcontrib><creatorcontrib>Esser, H G</creatorcontrib><creatorcontrib>Gauthier, E</creatorcontrib><creatorcontrib>Hartmann, D A</creatorcontrib><creatorcontrib>Douai, D</creatorcontrib><creatorcontrib>Louche, F</creatorcontrib><creatorcontrib>Ashikawa, N</creatorcontrib><creatorcontrib>Bae, Y D</creatorcontrib><creatorcontrib>Beaumont, B</creatorcontrib><creatorcontrib>Becoulet, A</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyssoivan, A</au><au>Koch, R</au><au>Noterdaeme, J-M</au><au>Philipps, V</au><au>Van Eester, D</au><au>Vender, M</au><au>Rohde, V</au><au>Bobkov, V</au><au>Sergienko, G</au><au>De La Cal, E</au><au>Esser, H G</au><au>Gauthier, E</au><au>Hartmann, D A</au><au>Douai, D</au><au>Louche, F</au><au>Ashikawa, N</au><au>Bae, Y D</au><au>Beaumont, B</au><au>Becoulet, A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines</atitle><btitle>AIP conference proceedings</btitle><date>2009-01-01</date><risdate>2009</risdate><volume>1187</volume><issue>1</issue><spage>165</spage><epage>172</epage><pages>165-172</pages><issn>0094-243X</issn><eissn>1551-7616</eissn><isbn>9780735407534</isbn><isbn>0735407533</isbn><abstract>ITER and future superconducting fusion machines need efficient wall conditioning techniques for routine operation in between shots in the presence of permanent high magnetic field for wall cleaning, surface isotope exchange and to control the in-vessel long term tritium retention. Ion Cyclotron Wall Conditioning (ICWC) based on the ICRF discharge is fully compatible and needs the presence of the magnetic field. The present paper focuses on the principal aspects of the ICWC discharge performance in large-size fusion machines: (i) neutral gas RF breakdown with conventional ICRF heating antennas, (ii) antenna coupling with low density (~10(17) m(-3)) RF plasmas and (iii) ICWC scenarios with improved RF plasma homogeneity in the radial and poloidal directions. All these factors were identified as crucial to achieve an enhanced conditioning effect (e.g. removal rates of selected 'marker' masses). All the observed effects are analyzed in terms of RF plasma wave excitation/absorption and compared with the predictions from 1-D RF full wave and 0-D RF plasma codes. Numerical modeling and empirical extrapolation from the existing machines give good evidence for the feasibility of using ICWC in ITER with the main ICRF antenna.</abstract><cop>United States</cop><doi>10.1063/1.3273720</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2009, Vol.1187 (1), p.165-172
issn 0094-243X
1551-7616
language eng
recordid cdi_osti_scitechconnect_21335698
source AIP Journals Complete
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
ABSORPTION
ANTENNAS
COMPUTERIZED SIMULATION
COUPLING
EXCITATION
EXTRAPOLATION
ICR HEATING
IONS
ISOTOPIC EXCHANGE
ITER TOKAMAK
MAGNETIC FIELDS
PLASMA
PLASMA PRODUCTION
PLASMA SIMULATION
PLASMA WAVES
RETENTION
RF SYSTEMS
TRITIUM
WALL EFFECTS
title ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T22%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ICRF%20Wall%20Conditioning:%20Present%20Status%20and%20Developments%20for%20Future%20Superconducting%20Fusion%20Machines&rft.btitle=AIP%20conference%20proceedings&rft.au=Lyssoivan,%20A&rft.date=2009-01-01&rft.volume=1187&rft.issue=1&rft.spage=165&rft.epage=172&rft.pages=165-172&rft.issn=0094-243X&rft.eissn=1551-7616&rft.isbn=9780735407534&rft.isbn_list=0735407533&rft_id=info:doi/10.1063/1.3273720&rft_dat=%3Cproquest_osti_%3E743146988%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743146988&rft_id=info:pmid/&rfr_iscdi=true