ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines
ITER and future superconducting fusion machines need efficient wall conditioning techniques for routine operation in between shots in the presence of permanent high magnetic field for wall cleaning, surface isotope exchange and to control the in-vessel long term tritium retention. Ion Cyclotron Wall...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | 1 |
container_start_page | 165 |
container_title | |
container_volume | 1187 |
creator | Lyssoivan, A Koch, R Noterdaeme, J-M Philipps, V Van Eester, D Vender, M Rohde, V Bobkov, V Sergienko, G De La Cal, E Esser, H G Gauthier, E Hartmann, D A Douai, D Louche, F Ashikawa, N Bae, Y D Beaumont, B Becoulet, A |
description | ITER and future superconducting fusion machines need efficient wall conditioning techniques for routine operation in between shots in the presence of permanent high magnetic field for wall cleaning, surface isotope exchange and to control the in-vessel long term tritium retention. Ion Cyclotron Wall Conditioning (ICWC) based on the ICRF discharge is fully compatible and needs the presence of the magnetic field. The present paper focuses on the principal aspects of the ICWC discharge performance in large-size fusion machines: (i) neutral gas RF breakdown with conventional ICRF heating antennas, (ii) antenna coupling with low density (~10(17) m(-3)) RF plasmas and (iii) ICWC scenarios with improved RF plasma homogeneity in the radial and poloidal directions. All these factors were identified as crucial to achieve an enhanced conditioning effect (e.g. removal rates of selected 'marker' masses). All the observed effects are analyzed in terms of RF plasma wave excitation/absorption and compared with the predictions from 1-D RF full wave and 0-D RF plasma codes. Numerical modeling and empirical extrapolation from the existing machines give good evidence for the feasibility of using ICWC in ITER with the main ICRF antenna. |
doi_str_mv | 10.1063/1.3273720 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21335698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743146988</sourcerecordid><originalsourceid>FETCH-LOGICAL-o250t-a853f04ea92ed11e7b472ed98ef5486be32da00ad6b0757d715f0914cfbdea013</originalsourceid><addsrcrecordid>eNotj0tPwzAQhC0eEqX0wD-wxIFTyvoVJ9xQoVCpCERBcIscZ0ODgl1ih9-PpXKa1eib0Swh5wzmDHJxxeaCa6E5HJAJU4plOmf5IZmVugAtlASthDwiE4BSZlyKjxNyGsIXAC-1LiakXi1elvTd9D1deNd0sfOuc5_X9HnAgC7STTRxDNS4ht7iL_Z-953sQFs_0OUYxwHpZtzhYFN6tDFlkx1SC300dts5DGfkuDV9wNm_Tsnb8u518ZCtn-5Xi5t15rmCmJlCiRYkmpJjwxjqWup0lQW2ShZ5jYI3BsA0eZ2e0o1mqoWSSdvWDRpgYkou9r0-xK4Ktotot2mWQxsrzoRQeVkk6nJP7Qb_M2KI1XcXLPa9cejHUGkpmExgIf4A1nZnPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>743146988</pqid></control><display><type>conference_proceeding</type><title>ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines</title><source>AIP Journals Complete</source><creator>Lyssoivan, A ; Koch, R ; Noterdaeme, J-M ; Philipps, V ; Van Eester, D ; Vender, M ; Rohde, V ; Bobkov, V ; Sergienko, G ; De La Cal, E ; Esser, H G ; Gauthier, E ; Hartmann, D A ; Douai, D ; Louche, F ; Ashikawa, N ; Bae, Y D ; Beaumont, B ; Becoulet, A</creator><creatorcontrib>Lyssoivan, A ; Koch, R ; Noterdaeme, J-M ; Philipps, V ; Van Eester, D ; Vender, M ; Rohde, V ; Bobkov, V ; Sergienko, G ; De La Cal, E ; Esser, H G ; Gauthier, E ; Hartmann, D A ; Douai, D ; Louche, F ; Ashikawa, N ; Bae, Y D ; Beaumont, B ; Becoulet, A</creatorcontrib><description>ITER and future superconducting fusion machines need efficient wall conditioning techniques for routine operation in between shots in the presence of permanent high magnetic field for wall cleaning, surface isotope exchange and to control the in-vessel long term tritium retention. Ion Cyclotron Wall Conditioning (ICWC) based on the ICRF discharge is fully compatible and needs the presence of the magnetic field. The present paper focuses on the principal aspects of the ICWC discharge performance in large-size fusion machines: (i) neutral gas RF breakdown with conventional ICRF heating antennas, (ii) antenna coupling with low density (~10(17) m(-3)) RF plasmas and (iii) ICWC scenarios with improved RF plasma homogeneity in the radial and poloidal directions. All these factors were identified as crucial to achieve an enhanced conditioning effect (e.g. removal rates of selected 'marker' masses). All the observed effects are analyzed in terms of RF plasma wave excitation/absorption and compared with the predictions from 1-D RF full wave and 0-D RF plasma codes. Numerical modeling and empirical extrapolation from the existing machines give good evidence for the feasibility of using ICWC in ITER with the main ICRF antenna.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 9780735407534</identifier><identifier>ISBN: 0735407533</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.3273720</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ABSORPTION ; ANTENNAS ; COMPUTERIZED SIMULATION ; COUPLING ; EXCITATION ; EXTRAPOLATION ; ICR HEATING ; IONS ; ISOTOPIC EXCHANGE ; ITER TOKAMAK ; MAGNETIC FIELDS ; PLASMA ; PLASMA PRODUCTION ; PLASMA SIMULATION ; PLASMA WAVES ; RETENTION ; RF SYSTEMS ; TRITIUM ; WALL EFFECTS</subject><ispartof>AIP conference proceedings, 2009, Vol.1187 (1), p.165-172</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21335698$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyssoivan, A</creatorcontrib><creatorcontrib>Koch, R</creatorcontrib><creatorcontrib>Noterdaeme, J-M</creatorcontrib><creatorcontrib>Philipps, V</creatorcontrib><creatorcontrib>Van Eester, D</creatorcontrib><creatorcontrib>Vender, M</creatorcontrib><creatorcontrib>Rohde, V</creatorcontrib><creatorcontrib>Bobkov, V</creatorcontrib><creatorcontrib>Sergienko, G</creatorcontrib><creatorcontrib>De La Cal, E</creatorcontrib><creatorcontrib>Esser, H G</creatorcontrib><creatorcontrib>Gauthier, E</creatorcontrib><creatorcontrib>Hartmann, D A</creatorcontrib><creatorcontrib>Douai, D</creatorcontrib><creatorcontrib>Louche, F</creatorcontrib><creatorcontrib>Ashikawa, N</creatorcontrib><creatorcontrib>Bae, Y D</creatorcontrib><creatorcontrib>Beaumont, B</creatorcontrib><creatorcontrib>Becoulet, A</creatorcontrib><title>ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines</title><title>AIP conference proceedings</title><description>ITER and future superconducting fusion machines need efficient wall conditioning techniques for routine operation in between shots in the presence of permanent high magnetic field for wall cleaning, surface isotope exchange and to control the in-vessel long term tritium retention. Ion Cyclotron Wall Conditioning (ICWC) based on the ICRF discharge is fully compatible and needs the presence of the magnetic field. The present paper focuses on the principal aspects of the ICWC discharge performance in large-size fusion machines: (i) neutral gas RF breakdown with conventional ICRF heating antennas, (ii) antenna coupling with low density (~10(17) m(-3)) RF plasmas and (iii) ICWC scenarios with improved RF plasma homogeneity in the radial and poloidal directions. All these factors were identified as crucial to achieve an enhanced conditioning effect (e.g. removal rates of selected 'marker' masses). All the observed effects are analyzed in terms of RF plasma wave excitation/absorption and compared with the predictions from 1-D RF full wave and 0-D RF plasma codes. Numerical modeling and empirical extrapolation from the existing machines give good evidence for the feasibility of using ICWC in ITER with the main ICRF antenna.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ABSORPTION</subject><subject>ANTENNAS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>COUPLING</subject><subject>EXCITATION</subject><subject>EXTRAPOLATION</subject><subject>ICR HEATING</subject><subject>IONS</subject><subject>ISOTOPIC EXCHANGE</subject><subject>ITER TOKAMAK</subject><subject>MAGNETIC FIELDS</subject><subject>PLASMA</subject><subject>PLASMA PRODUCTION</subject><subject>PLASMA SIMULATION</subject><subject>PLASMA WAVES</subject><subject>RETENTION</subject><subject>RF SYSTEMS</subject><subject>TRITIUM</subject><subject>WALL EFFECTS</subject><issn>0094-243X</issn><issn>1551-7616</issn><isbn>9780735407534</isbn><isbn>0735407533</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj0tPwzAQhC0eEqX0wD-wxIFTyvoVJ9xQoVCpCERBcIscZ0ODgl1ih9-PpXKa1eib0Swh5wzmDHJxxeaCa6E5HJAJU4plOmf5IZmVugAtlASthDwiE4BSZlyKjxNyGsIXAC-1LiakXi1elvTd9D1deNd0sfOuc5_X9HnAgC7STTRxDNS4ht7iL_Z-953sQFs_0OUYxwHpZtzhYFN6tDFlkx1SC300dts5DGfkuDV9wNm_Tsnb8u518ZCtn-5Xi5t15rmCmJlCiRYkmpJjwxjqWup0lQW2ShZ5jYI3BsA0eZ2e0o1mqoWSSdvWDRpgYkou9r0-xK4Ktotot2mWQxsrzoRQeVkk6nJP7Qb_M2KI1XcXLPa9cejHUGkpmExgIf4A1nZnPw</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Lyssoivan, A</creator><creator>Koch, R</creator><creator>Noterdaeme, J-M</creator><creator>Philipps, V</creator><creator>Van Eester, D</creator><creator>Vender, M</creator><creator>Rohde, V</creator><creator>Bobkov, V</creator><creator>Sergienko, G</creator><creator>De La Cal, E</creator><creator>Esser, H G</creator><creator>Gauthier, E</creator><creator>Hartmann, D A</creator><creator>Douai, D</creator><creator>Louche, F</creator><creator>Ashikawa, N</creator><creator>Bae, Y D</creator><creator>Beaumont, B</creator><creator>Becoulet, A</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20090101</creationdate><title>ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines</title><author>Lyssoivan, A ; Koch, R ; Noterdaeme, J-M ; Philipps, V ; Van Eester, D ; Vender, M ; Rohde, V ; Bobkov, V ; Sergienko, G ; De La Cal, E ; Esser, H G ; Gauthier, E ; Hartmann, D A ; Douai, D ; Louche, F ; Ashikawa, N ; Bae, Y D ; Beaumont, B ; Becoulet, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o250t-a853f04ea92ed11e7b472ed98ef5486be32da00ad6b0757d715f0914cfbdea013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ABSORPTION</topic><topic>ANTENNAS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>COUPLING</topic><topic>EXCITATION</topic><topic>EXTRAPOLATION</topic><topic>ICR HEATING</topic><topic>IONS</topic><topic>ISOTOPIC EXCHANGE</topic><topic>ITER TOKAMAK</topic><topic>MAGNETIC FIELDS</topic><topic>PLASMA</topic><topic>PLASMA PRODUCTION</topic><topic>PLASMA SIMULATION</topic><topic>PLASMA WAVES</topic><topic>RETENTION</topic><topic>RF SYSTEMS</topic><topic>TRITIUM</topic><topic>WALL EFFECTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyssoivan, A</creatorcontrib><creatorcontrib>Koch, R</creatorcontrib><creatorcontrib>Noterdaeme, J-M</creatorcontrib><creatorcontrib>Philipps, V</creatorcontrib><creatorcontrib>Van Eester, D</creatorcontrib><creatorcontrib>Vender, M</creatorcontrib><creatorcontrib>Rohde, V</creatorcontrib><creatorcontrib>Bobkov, V</creatorcontrib><creatorcontrib>Sergienko, G</creatorcontrib><creatorcontrib>De La Cal, E</creatorcontrib><creatorcontrib>Esser, H G</creatorcontrib><creatorcontrib>Gauthier, E</creatorcontrib><creatorcontrib>Hartmann, D A</creatorcontrib><creatorcontrib>Douai, D</creatorcontrib><creatorcontrib>Louche, F</creatorcontrib><creatorcontrib>Ashikawa, N</creatorcontrib><creatorcontrib>Bae, Y D</creatorcontrib><creatorcontrib>Beaumont, B</creatorcontrib><creatorcontrib>Becoulet, A</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyssoivan, A</au><au>Koch, R</au><au>Noterdaeme, J-M</au><au>Philipps, V</au><au>Van Eester, D</au><au>Vender, M</au><au>Rohde, V</au><au>Bobkov, V</au><au>Sergienko, G</au><au>De La Cal, E</au><au>Esser, H G</au><au>Gauthier, E</au><au>Hartmann, D A</au><au>Douai, D</au><au>Louche, F</au><au>Ashikawa, N</au><au>Bae, Y D</au><au>Beaumont, B</au><au>Becoulet, A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines</atitle><btitle>AIP conference proceedings</btitle><date>2009-01-01</date><risdate>2009</risdate><volume>1187</volume><issue>1</issue><spage>165</spage><epage>172</epage><pages>165-172</pages><issn>0094-243X</issn><eissn>1551-7616</eissn><isbn>9780735407534</isbn><isbn>0735407533</isbn><abstract>ITER and future superconducting fusion machines need efficient wall conditioning techniques for routine operation in between shots in the presence of permanent high magnetic field for wall cleaning, surface isotope exchange and to control the in-vessel long term tritium retention. Ion Cyclotron Wall Conditioning (ICWC) based on the ICRF discharge is fully compatible and needs the presence of the magnetic field. The present paper focuses on the principal aspects of the ICWC discharge performance in large-size fusion machines: (i) neutral gas RF breakdown with conventional ICRF heating antennas, (ii) antenna coupling with low density (~10(17) m(-3)) RF plasmas and (iii) ICWC scenarios with improved RF plasma homogeneity in the radial and poloidal directions. All these factors were identified as crucial to achieve an enhanced conditioning effect (e.g. removal rates of selected 'marker' masses). All the observed effects are analyzed in terms of RF plasma wave excitation/absorption and compared with the predictions from 1-D RF full wave and 0-D RF plasma codes. Numerical modeling and empirical extrapolation from the existing machines give good evidence for the feasibility of using ICWC in ITER with the main ICRF antenna.</abstract><cop>United States</cop><doi>10.1063/1.3273720</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2009, Vol.1187 (1), p.165-172 |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_osti_scitechconnect_21335698 |
source | AIP Journals Complete |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ABSORPTION ANTENNAS COMPUTERIZED SIMULATION COUPLING EXCITATION EXTRAPOLATION ICR HEATING IONS ISOTOPIC EXCHANGE ITER TOKAMAK MAGNETIC FIELDS PLASMA PLASMA PRODUCTION PLASMA SIMULATION PLASMA WAVES RETENTION RF SYSTEMS TRITIUM WALL EFFECTS |
title | ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T22%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ICRF%20Wall%20Conditioning:%20Present%20Status%20and%20Developments%20for%20Future%20Superconducting%20Fusion%20Machines&rft.btitle=AIP%20conference%20proceedings&rft.au=Lyssoivan,%20A&rft.date=2009-01-01&rft.volume=1187&rft.issue=1&rft.spage=165&rft.epage=172&rft.pages=165-172&rft.issn=0094-243X&rft.eissn=1551-7616&rft.isbn=9780735407534&rft.isbn_list=0735407533&rft_id=info:doi/10.1063/1.3273720&rft_dat=%3Cproquest_osti_%3E743146988%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743146988&rft_id=info:pmid/&rfr_iscdi=true |