Identification of Bayesian posteriors for coefficients of chaos expansions

This article is concerned with the identification of probabilistic characterizations of random variables and fields from experimental data. The data used for the identification consist of measurements of several realizations of the uncertain quantities that must be characterized. The random variable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2010-05, Vol.229 (9), p.3134-3154
Hauptverfasser: Arnst, M., Ghanem, R., Soize, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3154
container_issue 9
container_start_page 3134
container_title Journal of computational physics
container_volume 229
creator Arnst, M.
Ghanem, R.
Soize, C.
description This article is concerned with the identification of probabilistic characterizations of random variables and fields from experimental data. The data used for the identification consist of measurements of several realizations of the uncertain quantities that must be characterized. The random variables and fields are approximated by a polynomial chaos expansion, and the coefficients of this expansion are viewed as unknown parameters to be identified. It is shown how the Bayesian paradigm can be applied to formulate and solve the inverse problem. The estimated polynomial chaos coefficients are hereby themselves characterized as random variables whose probability density function is the Bayesian posterior. This allows to quantify the impact of missing experimental information on the accuracy of the identified coefficients, as well as on subsequent predictions. An illustration in stochastic aeroelastic stability analysis is provided to demonstrate the proposed methodology.
doi_str_mv 10.1016/j.jcp.2009.12.033
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21333947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999109007190</els_id><sourcerecordid>1671231244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-47fbc1de39e6b5f5dce967757affe425801e1539a7b7c999aca89dba051ec1f23</originalsourceid><addsrcrecordid>eNp9kU9v1DAUxCMEEkvhA3CLhJDgkPCenX8Wp7YCWrQSFzhbzstz16s0DnZ2Rb89Dql65GTL-s14NJNlbxFKBGw-HcsjzaUAUCWKEqR8lu0QFBSixeZ5tgMQWCil8GX2KsYjAHR11e2y77cDT4uzjszi_JR7m1-ZB47OTPns48LB-RBz60NOnm3iXOLjytHB-Jjzn9lMMUnj6-yFNWPkN4_nRfbr65ef1zfF_se32-vLfUE1qKWoWtsTDiwVN31t64FYNW1bt8ZarkTdATLWUpm2byklNmQ6NfQGamRCK-RF9m7zTfGcjuQWpgP5aWJatEApparaRMmNGh3fsfahd_ostDduu5_GO21I96yFaDqNIDrRJNXHTXUwo56Duzfh4Z_m5nKv1zeApqsktmdM7IeNnYP_feK46HsXicfRTOxPUWPTopAoqiqhuKEUfIyB7ZM3gl7300ed9tPrfhqFTvslzftHexPJjDaYiVx8EqbUKAHqxH3eOE6dnx2HtRKeiAcX1kYG7_7zy1_wNK6z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671231244</pqid></control><display><type>article</type><title>Identification of Bayesian posteriors for coefficients of chaos expansions</title><source>Elsevier ScienceDirect Journals</source><creator>Arnst, M. ; Ghanem, R. ; Soize, C.</creator><creatorcontrib>Arnst, M. ; Ghanem, R. ; Soize, C.</creatorcontrib><description>This article is concerned with the identification of probabilistic characterizations of random variables and fields from experimental data. The data used for the identification consist of measurements of several realizations of the uncertain quantities that must be characterized. The random variables and fields are approximated by a polynomial chaos expansion, and the coefficients of this expansion are viewed as unknown parameters to be identified. It is shown how the Bayesian paradigm can be applied to formulate and solve the inverse problem. The estimated polynomial chaos coefficients are hereby themselves characterized as random variables whose probability density function is the Bayesian posterior. This allows to quantify the impact of missing experimental information on the accuracy of the identified coefficients, as well as on subsequent predictions. An illustration in stochastic aeroelastic stability analysis is provided to demonstrate the proposed methodology.</description><identifier>ISSN: 0021-9991</identifier><identifier>ISSN: 1090-2716</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2009.12.033</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Aeroelastic stability ; Approximation ; Bayesian ; Bayesian analysis ; CHAOS THEORY ; Computational techniques ; Engineering Sciences ; Engineering, computing &amp; technology ; Exact sciences and technology ; Identification ; Ingénierie mécanique ; Ingénierie, informatique &amp; technologie ; Inverse problems ; MATHEMATICAL METHODS AND COMPUTING ; Mathematical methods in physics ; Mathematics ; Maximum likelihood ; MAXIMUM-LIKELIHOOD FIT ; Mechanical engineering ; Mechanics ; Physics ; Polynomial chaos ; POLYNOMIALS ; PROBABILISTIC ESTIMATION ; Probability ; PROBABILITY DENSITY FUNCTIONS ; Probability theory ; Random variables ; RANDOMNESS ; Statistics ; Stochastic inversion ; STOCHASTIC PROCESSES ; Uncertainty quantification ; Validation</subject><ispartof>Journal of computational physics, 2010-05, Vol.229 (9), p.3134-3154</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-47fbc1de39e6b5f5dce967757affe425801e1539a7b7c999aca89dba051ec1f23</citedby><cites>FETCH-LOGICAL-c509t-47fbc1de39e6b5f5dce967757affe425801e1539a7b7c999aca89dba051ec1f23</cites><orcidid>0000-0002-1083-6771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2009.12.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22613005$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00684317$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21333947$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnst, M.</creatorcontrib><creatorcontrib>Ghanem, R.</creatorcontrib><creatorcontrib>Soize, C.</creatorcontrib><title>Identification of Bayesian posteriors for coefficients of chaos expansions</title><title>Journal of computational physics</title><description>This article is concerned with the identification of probabilistic characterizations of random variables and fields from experimental data. The data used for the identification consist of measurements of several realizations of the uncertain quantities that must be characterized. The random variables and fields are approximated by a polynomial chaos expansion, and the coefficients of this expansion are viewed as unknown parameters to be identified. It is shown how the Bayesian paradigm can be applied to formulate and solve the inverse problem. The estimated polynomial chaos coefficients are hereby themselves characterized as random variables whose probability density function is the Bayesian posterior. This allows to quantify the impact of missing experimental information on the accuracy of the identified coefficients, as well as on subsequent predictions. An illustration in stochastic aeroelastic stability analysis is provided to demonstrate the proposed methodology.</description><subject>Aeroelastic stability</subject><subject>Approximation</subject><subject>Bayesian</subject><subject>Bayesian analysis</subject><subject>CHAOS THEORY</subject><subject>Computational techniques</subject><subject>Engineering Sciences</subject><subject>Engineering, computing &amp; technology</subject><subject>Exact sciences and technology</subject><subject>Identification</subject><subject>Ingénierie mécanique</subject><subject>Ingénierie, informatique &amp; technologie</subject><subject>Inverse problems</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Maximum likelihood</subject><subject>MAXIMUM-LIKELIHOOD FIT</subject><subject>Mechanical engineering</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Polynomial chaos</subject><subject>POLYNOMIALS</subject><subject>PROBABILISTIC ESTIMATION</subject><subject>Probability</subject><subject>PROBABILITY DENSITY FUNCTIONS</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>RANDOMNESS</subject><subject>Statistics</subject><subject>Stochastic inversion</subject><subject>STOCHASTIC PROCESSES</subject><subject>Uncertainty quantification</subject><subject>Validation</subject><issn>0021-9991</issn><issn>1090-2716</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAUxCMEEkvhA3CLhJDgkPCenX8Wp7YCWrQSFzhbzstz16s0DnZ2Rb89Dql65GTL-s14NJNlbxFKBGw-HcsjzaUAUCWKEqR8lu0QFBSixeZ5tgMQWCil8GX2KsYjAHR11e2y77cDT4uzjszi_JR7m1-ZB47OTPns48LB-RBz60NOnm3iXOLjytHB-Jjzn9lMMUnj6-yFNWPkN4_nRfbr65ef1zfF_se32-vLfUE1qKWoWtsTDiwVN31t64FYNW1bt8ZarkTdATLWUpm2byklNmQ6NfQGamRCK-RF9m7zTfGcjuQWpgP5aWJatEApparaRMmNGh3fsfahd_ostDduu5_GO21I96yFaDqNIDrRJNXHTXUwo56Duzfh4Z_m5nKv1zeApqsktmdM7IeNnYP_feK46HsXicfRTOxPUWPTopAoqiqhuKEUfIyB7ZM3gl7300ed9tPrfhqFTvslzftHexPJjDaYiVx8EqbUKAHqxH3eOE6dnx2HtRKeiAcX1kYG7_7zy1_wNK6z</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Arnst, M.</creator><creator>Ghanem, R.</creator><creator>Soize, C.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Academic Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><scope>Q33</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1083-6771</orcidid></search><sort><creationdate>20100501</creationdate><title>Identification of Bayesian posteriors for coefficients of chaos expansions</title><author>Arnst, M. ; Ghanem, R. ; Soize, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-47fbc1de39e6b5f5dce967757affe425801e1539a7b7c999aca89dba051ec1f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aeroelastic stability</topic><topic>Approximation</topic><topic>Bayesian</topic><topic>Bayesian analysis</topic><topic>CHAOS THEORY</topic><topic>Computational techniques</topic><topic>Engineering Sciences</topic><topic>Engineering, computing &amp; technology</topic><topic>Exact sciences and technology</topic><topic>Identification</topic><topic>Ingénierie mécanique</topic><topic>Ingénierie, informatique &amp; technologie</topic><topic>Inverse problems</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Maximum likelihood</topic><topic>MAXIMUM-LIKELIHOOD FIT</topic><topic>Mechanical engineering</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Polynomial chaos</topic><topic>POLYNOMIALS</topic><topic>PROBABILISTIC ESTIMATION</topic><topic>Probability</topic><topic>PROBABILITY DENSITY FUNCTIONS</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>RANDOMNESS</topic><topic>Statistics</topic><topic>Stochastic inversion</topic><topic>STOCHASTIC PROCESSES</topic><topic>Uncertainty quantification</topic><topic>Validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnst, M.</creatorcontrib><creatorcontrib>Ghanem, R.</creatorcontrib><creatorcontrib>Soize, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnst, M.</au><au>Ghanem, R.</au><au>Soize, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Bayesian posteriors for coefficients of chaos expansions</atitle><jtitle>Journal of computational physics</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>229</volume><issue>9</issue><spage>3134</spage><epage>3154</epage><pages>3134-3154</pages><issn>0021-9991</issn><issn>1090-2716</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>This article is concerned with the identification of probabilistic characterizations of random variables and fields from experimental data. The data used for the identification consist of measurements of several realizations of the uncertain quantities that must be characterized. The random variables and fields are approximated by a polynomial chaos expansion, and the coefficients of this expansion are viewed as unknown parameters to be identified. It is shown how the Bayesian paradigm can be applied to formulate and solve the inverse problem. The estimated polynomial chaos coefficients are hereby themselves characterized as random variables whose probability density function is the Bayesian posterior. This allows to quantify the impact of missing experimental information on the accuracy of the identified coefficients, as well as on subsequent predictions. An illustration in stochastic aeroelastic stability analysis is provided to demonstrate the proposed methodology.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2009.12.033</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1083-6771</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2010-05, Vol.229 (9), p.3134-3154
issn 0021-9991
1090-2716
1090-2716
language eng
recordid cdi_osti_scitechconnect_21333947
source Elsevier ScienceDirect Journals
subjects Aeroelastic stability
Approximation
Bayesian
Bayesian analysis
CHAOS THEORY
Computational techniques
Engineering Sciences
Engineering, computing & technology
Exact sciences and technology
Identification
Ingénierie mécanique
Ingénierie, informatique & technologie
Inverse problems
MATHEMATICAL METHODS AND COMPUTING
Mathematical methods in physics
Mathematics
Maximum likelihood
MAXIMUM-LIKELIHOOD FIT
Mechanical engineering
Mechanics
Physics
Polynomial chaos
POLYNOMIALS
PROBABILISTIC ESTIMATION
Probability
PROBABILITY DENSITY FUNCTIONS
Probability theory
Random variables
RANDOMNESS
Statistics
Stochastic inversion
STOCHASTIC PROCESSES
Uncertainty quantification
Validation
title Identification of Bayesian posteriors for coefficients of chaos expansions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Bayesian%20posteriors%20for%20coefficients%20of%20chaos%20expansions&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Arnst,%20M.&rft.date=2010-05-01&rft.volume=229&rft.issue=9&rft.spage=3134&rft.epage=3154&rft.pages=3134-3154&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2009.12.033&rft_dat=%3Cproquest_osti_%3E1671231244%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671231244&rft_id=info:pmid/&rft_els_id=S0021999109007190&rfr_iscdi=true