General theory of oscillon dynamics

We present a comprehensive, nonperturbative analytical method to investigate the dynamics of time-dependent oscillating scalar field configurations. The method is applied to oscillons in a {phi}{sup 4} Klein-Gordon model in two and three spatial dimensions, yielding high accuracy results in the char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles and fields Particles and fields, 2009-12, Vol.80 (12), Article 125037
Hauptverfasser: Gleiser, Marcelo, Sicilia, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physical review. D, Particles and fields
container_volume 80
creator Gleiser, Marcelo
Sicilia, David
description We present a comprehensive, nonperturbative analytical method to investigate the dynamics of time-dependent oscillating scalar field configurations. The method is applied to oscillons in a {phi}{sup 4} Klein-Gordon model in two and three spatial dimensions, yielding high accuracy results in the characterization of all aspects of the complex oscillon dynamics. In particular, we show how oscillons can be interpreted as long-lived perturbations about an attractor in field configuration space. By investigating their radiation rate as they approach the attractor, we obtain an accurate estimate of their lifetimes in d=3 and explain why they seem to be perturbatively stable in d=2, where d is the number of spatial dimensions.0.
doi_str_mv 10.1103/PhysRevD.80.125037
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21316587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_80_125037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-116f3c7134512c11df125f44b4f5c1e2175ef5c69381bc44cf7a7fef9a41916d3</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhIMoWKt_wNNCz1vz5nuPUrUKBUX0HNJ3E7qy3UiyCPvvjW09zTAMw_AQcgt0CUD53dtuyu_-52FpSsAk5fqMzEBKWjOuzPnJ66Yxl-Qq5y9KOVNaz8hi7QefXF-NOx_TVMVQxYxd38ehaqfB7TvM1-QiuD77m5POyefT48fqud68rl9W95samZZjDaACRw1cSGAI0IbyJAixFUEieAZa-uJUww1sUQgM2ungQ-MENKBaPieL427MY2fLi9HjDuMweBwtAw5KGl1a7NjCFHNOPtjv1O1dmixQ-wfD_sOwpgQHGPwXcBhSpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>General theory of oscillon dynamics</title><source>American Physical Society Journals</source><creator>Gleiser, Marcelo ; Sicilia, David</creator><creatorcontrib>Gleiser, Marcelo ; Sicilia, David</creatorcontrib><description>We present a comprehensive, nonperturbative analytical method to investigate the dynamics of time-dependent oscillating scalar field configurations. The method is applied to oscillons in a {phi}{sup 4} Klein-Gordon model in two and three spatial dimensions, yielding high accuracy results in the characterization of all aspects of the complex oscillon dynamics. In particular, we show how oscillons can be interpreted as long-lived perturbations about an attractor in field configuration space. By investigating their radiation rate as they approach the attractor, we obtain an accurate estimate of their lifetimes in d=3 and explain why they seem to be perturbatively stable in d=2, where d is the number of spatial dimensions.0.</description><identifier>ISSN: 1550-7998</identifier><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1550-2368</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.80.125037</identifier><language>eng</language><publisher>United States</publisher><subject>ATTRACTORS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONFIGURATION ; DISTURBANCES ; KLEIN-GORDON EQUATION ; LIFETIME ; OSCILLATIONS ; PERTURBATION THEORY ; SCALAR FIELDS ; SPACE ; TIME DEPENDENCE</subject><ispartof>Physical review. D, Particles and fields, 2009-12, Vol.80 (12), Article 125037</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-116f3c7134512c11df125f44b4f5c1e2175ef5c69381bc44cf7a7fef9a41916d3</citedby><cites>FETCH-LOGICAL-c275t-116f3c7134512c11df125f44b4f5c1e2175ef5c69381bc44cf7a7fef9a41916d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2875,2876,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21316587$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gleiser, Marcelo</creatorcontrib><creatorcontrib>Sicilia, David</creatorcontrib><title>General theory of oscillon dynamics</title><title>Physical review. D, Particles and fields</title><description>We present a comprehensive, nonperturbative analytical method to investigate the dynamics of time-dependent oscillating scalar field configurations. The method is applied to oscillons in a {phi}{sup 4} Klein-Gordon model in two and three spatial dimensions, yielding high accuracy results in the characterization of all aspects of the complex oscillon dynamics. In particular, we show how oscillons can be interpreted as long-lived perturbations about an attractor in field configuration space. By investigating their radiation rate as they approach the attractor, we obtain an accurate estimate of their lifetimes in d=3 and explain why they seem to be perturbatively stable in d=2, where d is the number of spatial dimensions.0.</description><subject>ATTRACTORS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONFIGURATION</subject><subject>DISTURBANCES</subject><subject>KLEIN-GORDON EQUATION</subject><subject>LIFETIME</subject><subject>OSCILLATIONS</subject><subject>PERTURBATION THEORY</subject><subject>SCALAR FIELDS</subject><subject>SPACE</subject><subject>TIME DEPENDENCE</subject><issn>1550-7998</issn><issn>0556-2821</issn><issn>1550-2368</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEYhIMoWKt_wNNCz1vz5nuPUrUKBUX0HNJ3E7qy3UiyCPvvjW09zTAMw_AQcgt0CUD53dtuyu_-52FpSsAk5fqMzEBKWjOuzPnJ66Yxl-Qq5y9KOVNaz8hi7QefXF-NOx_TVMVQxYxd38ehaqfB7TvM1-QiuD77m5POyefT48fqud68rl9W95samZZjDaACRw1cSGAI0IbyJAixFUEieAZa-uJUww1sUQgM2ungQ-MENKBaPieL427MY2fLi9HjDuMweBwtAw5KGl1a7NjCFHNOPtjv1O1dmixQ-wfD_sOwpgQHGPwXcBhSpg</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Gleiser, Marcelo</creator><creator>Sicilia, David</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20091201</creationdate><title>General theory of oscillon dynamics</title><author>Gleiser, Marcelo ; Sicilia, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-116f3c7134512c11df125f44b4f5c1e2175ef5c69381bc44cf7a7fef9a41916d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ATTRACTORS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONFIGURATION</topic><topic>DISTURBANCES</topic><topic>KLEIN-GORDON EQUATION</topic><topic>LIFETIME</topic><topic>OSCILLATIONS</topic><topic>PERTURBATION THEORY</topic><topic>SCALAR FIELDS</topic><topic>SPACE</topic><topic>TIME DEPENDENCE</topic><toplevel>online_resources</toplevel><creatorcontrib>Gleiser, Marcelo</creatorcontrib><creatorcontrib>Sicilia, David</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gleiser, Marcelo</au><au>Sicilia, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General theory of oscillon dynamics</atitle><jtitle>Physical review. D, Particles and fields</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>80</volume><issue>12</issue><artnum>125037</artnum><issn>1550-7998</issn><issn>0556-2821</issn><eissn>1550-2368</eissn><eissn>1089-4918</eissn><abstract>We present a comprehensive, nonperturbative analytical method to investigate the dynamics of time-dependent oscillating scalar field configurations. The method is applied to oscillons in a {phi}{sup 4} Klein-Gordon model in two and three spatial dimensions, yielding high accuracy results in the characterization of all aspects of the complex oscillon dynamics. In particular, we show how oscillons can be interpreted as long-lived perturbations about an attractor in field configuration space. By investigating their radiation rate as they approach the attractor, we obtain an accurate estimate of their lifetimes in d=3 and explain why they seem to be perturbatively stable in d=2, where d is the number of spatial dimensions.0.</abstract><cop>United States</cop><doi>10.1103/PhysRevD.80.125037</doi></addata></record>
fulltext fulltext
identifier ISSN: 1550-7998
ispartof Physical review. D, Particles and fields, 2009-12, Vol.80 (12), Article 125037
issn 1550-7998
0556-2821
1550-2368
1089-4918
language eng
recordid cdi_osti_scitechconnect_21316587
source American Physical Society Journals
subjects ATTRACTORS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONFIGURATION
DISTURBANCES
KLEIN-GORDON EQUATION
LIFETIME
OSCILLATIONS
PERTURBATION THEORY
SCALAR FIELDS
SPACE
TIME DEPENDENCE
title General theory of oscillon dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20theory%20of%20oscillon%20dynamics&rft.jtitle=Physical%20review.%20D,%20Particles%20and%20fields&rft.au=Gleiser,%20Marcelo&rft.date=2009-12-01&rft.volume=80&rft.issue=12&rft.artnum=125037&rft.issn=1550-7998&rft.eissn=1550-2368&rft_id=info:doi/10.1103/PhysRevD.80.125037&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevD_80_125037%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true