Bases for Spin Systems and Qudits

There is a growing interest these days for the field of quantum information and quantum computation (for which classical bits are replaced by qubits in dimension 2 and qudits in dimension d). This field is at the crossing of mathematics, informatics and quantum physics. In this work, bases of releva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kibler, Maurice R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1131
creator Kibler, Maurice R.
description There is a growing interest these days for the field of quantum information and quantum computation (for which classical bits are replaced by qubits in dimension 2 and qudits in dimension d). This field is at the crossing of mathematics, informatics and quantum physics. In this work, bases of relevance for spin systems with cyclic symmetry as well as for quantum information and quantum computation are discussed from the theory of angular momentum and group-theoretical methods. This approach is connected to the use of generalized Pauli matrices (in dimension d) arising from a polar decomposition of the group SU{sub 2}. Examples are given for d = 2, 3 and 4.
doi_str_mv 10.1063/1.3153451
format Conference Proceeding
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_21304987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21304987</sourcerecordid><originalsourceid>FETCH-LOGICAL-o183t-f00557d4ec1c508bea38a5907d209277ac7c027d296c6c748bfd501a3871772e3</originalsourceid><addsrcrecordid>eNotjMtKAzEUQIMoOFYX_kHEdeq9ed1kqcUXFEqpgruSJhkc0RnxxoV_b0FXhwOHI8Q5whzBmyucG3TGOjwQHTqHijz6Q9EBRKu0NS_H4oT5DUBHotCJi5vElWU_fcnN5zDKzQ-3-sEyjUWuv8vQ-FQc9emd69k_Z-L57vZp8aCWq_vHxfVSTRhMUz2Ac1RszZgdhF1NJiQXgYqGqIlSpgx6b9Fnn8mGXV8c4L4iJNLVzMTl33fiNmw5D63m1zyNY81tq9GAjYHMLxFjPVE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bases for Spin Systems and Qudits</title><source>AIP Journals Complete</source><creator>Kibler, Maurice R.</creator><creatorcontrib>Kibler, Maurice R.</creatorcontrib><description>There is a growing interest these days for the field of quantum information and quantum computation (for which classical bits are replaced by qubits in dimension 2 and qudits in dimension d). This field is at the crossing of mathematics, informatics and quantum physics. In this work, bases of relevance for spin systems with cyclic symmetry as well as for quantum information and quantum computation are discussed from the theory of angular momentum and group-theoretical methods. This approach is connected to the use of generalized Pauli matrices (in dimension d) arising from a polar decomposition of the group SU{sub 2}. Examples are given for d = 2, 3 and 4.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.3153451</identifier><language>eng</language><publisher>United States</publisher><subject>ALGEBRA ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; MATRICES ; PAULI SPIN OPERATORS ; QUANTUM COMPUTERS ; QUANTUM CRYPTOGRAPHY ; QUANTUM MECHANICS ; QUBITS ; SPIN ; SU-2 GROUPS ; SYMMETRY</subject><ispartof>AIP conference proceedings, 2009, Vol.1131 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21304987$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kibler, Maurice R.</creatorcontrib><title>Bases for Spin Systems and Qudits</title><title>AIP conference proceedings</title><description>There is a growing interest these days for the field of quantum information and quantum computation (for which classical bits are replaced by qubits in dimension 2 and qudits in dimension d). This field is at the crossing of mathematics, informatics and quantum physics. In this work, bases of relevance for spin systems with cyclic symmetry as well as for quantum information and quantum computation are discussed from the theory of angular momentum and group-theoretical methods. This approach is connected to the use of generalized Pauli matrices (in dimension d) arising from a polar decomposition of the group SU{sub 2}. Examples are given for d = 2, 3 and 4.</description><subject>ALGEBRA</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>MATRICES</subject><subject>PAULI SPIN OPERATORS</subject><subject>QUANTUM COMPUTERS</subject><subject>QUANTUM CRYPTOGRAPHY</subject><subject>QUANTUM MECHANICS</subject><subject>QUBITS</subject><subject>SPIN</subject><subject>SU-2 GROUPS</subject><subject>SYMMETRY</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjMtKAzEUQIMoOFYX_kHEdeq9ed1kqcUXFEqpgruSJhkc0RnxxoV_b0FXhwOHI8Q5whzBmyucG3TGOjwQHTqHijz6Q9EBRKu0NS_H4oT5DUBHotCJi5vElWU_fcnN5zDKzQ-3-sEyjUWuv8vQ-FQc9emd69k_Z-L57vZp8aCWq_vHxfVSTRhMUz2Ac1RszZgdhF1NJiQXgYqGqIlSpgx6b9Fnn8mGXV8c4L4iJNLVzMTl33fiNmw5D63m1zyNY81tq9GAjYHMLxFjPVE</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Kibler, Maurice R.</creator><scope>OTOTI</scope></search><sort><creationdate>20090101</creationdate><title>Bases for Spin Systems and Qudits</title><author>Kibler, Maurice R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o183t-f00557d4ec1c508bea38a5907d209277ac7c027d296c6c748bfd501a3871772e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ALGEBRA</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>MATRICES</topic><topic>PAULI SPIN OPERATORS</topic><topic>QUANTUM COMPUTERS</topic><topic>QUANTUM CRYPTOGRAPHY</topic><topic>QUANTUM MECHANICS</topic><topic>QUBITS</topic><topic>SPIN</topic><topic>SU-2 GROUPS</topic><topic>SYMMETRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kibler, Maurice R.</creatorcontrib><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kibler, Maurice R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bases for Spin Systems and Qudits</atitle><btitle>AIP conference proceedings</btitle><date>2009-01-01</date><risdate>2009</risdate><volume>1131</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>There is a growing interest these days for the field of quantum information and quantum computation (for which classical bits are replaced by qubits in dimension 2 and qudits in dimension d). This field is at the crossing of mathematics, informatics and quantum physics. In this work, bases of relevance for spin systems with cyclic symmetry as well as for quantum information and quantum computation are discussed from the theory of angular momentum and group-theoretical methods. This approach is connected to the use of generalized Pauli matrices (in dimension d) arising from a polar decomposition of the group SU{sub 2}. Examples are given for d = 2, 3 and 4.</abstract><cop>United States</cop><doi>10.1063/1.3153451</doi></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2009, Vol.1131 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_osti_scitechconnect_21304987
source AIP Journals Complete
subjects ALGEBRA
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
MATRICES
PAULI SPIN OPERATORS
QUANTUM COMPUTERS
QUANTUM CRYPTOGRAPHY
QUANTUM MECHANICS
QUBITS
SPIN
SU-2 GROUPS
SYMMETRY
title Bases for Spin Systems and Qudits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bases%20for%20Spin%20Systems%20and%20Qudits&rft.btitle=AIP%20conference%20proceedings&rft.au=Kibler,%20Maurice%20R.&rft.date=2009-01-01&rft.volume=1131&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.3153451&rft_dat=%3Costi%3E21304987%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true