Bases for Spin Systems and Qudits
There is a growing interest these days for the field of quantum information and quantum computation (for which classical bits are replaced by qubits in dimension 2 and qudits in dimension d). This field is at the crossing of mathematics, informatics and quantum physics. In this work, bases of releva...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1131 |
creator | Kibler, Maurice R. |
description | There is a growing interest these days for the field of quantum information and quantum computation (for which classical bits are replaced by qubits in dimension 2 and qudits in dimension d). This field is at the crossing of mathematics, informatics and quantum physics. In this work, bases of relevance for spin systems with cyclic symmetry as well as for quantum information and quantum computation are discussed from the theory of angular momentum and group-theoretical methods. This approach is connected to the use of generalized Pauli matrices (in dimension d) arising from a polar decomposition of the group SU{sub 2}. Examples are given for d = 2, 3 and 4. |
doi_str_mv | 10.1063/1.3153451 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_21304987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21304987</sourcerecordid><originalsourceid>FETCH-LOGICAL-o183t-f00557d4ec1c508bea38a5907d209277ac7c027d296c6c748bfd501a3871772e3</originalsourceid><addsrcrecordid>eNotjMtKAzEUQIMoOFYX_kHEdeq9ed1kqcUXFEqpgruSJhkc0RnxxoV_b0FXhwOHI8Q5whzBmyucG3TGOjwQHTqHijz6Q9EBRKu0NS_H4oT5DUBHotCJi5vElWU_fcnN5zDKzQ-3-sEyjUWuv8vQ-FQc9emd69k_Z-L57vZp8aCWq_vHxfVSTRhMUz2Ac1RszZgdhF1NJiQXgYqGqIlSpgx6b9Fnn8mGXV8c4L4iJNLVzMTl33fiNmw5D63m1zyNY81tq9GAjYHMLxFjPVE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bases for Spin Systems and Qudits</title><source>AIP Journals Complete</source><creator>Kibler, Maurice R.</creator><creatorcontrib>Kibler, Maurice R.</creatorcontrib><description>There is a growing interest these days for the field of quantum information and quantum computation (for which classical bits are replaced by qubits in dimension 2 and qudits in dimension d). This field is at the crossing of mathematics, informatics and quantum physics. In this work, bases of relevance for spin systems with cyclic symmetry as well as for quantum information and quantum computation are discussed from the theory of angular momentum and group-theoretical methods. This approach is connected to the use of generalized Pauli matrices (in dimension d) arising from a polar decomposition of the group SU{sub 2}. Examples are given for d = 2, 3 and 4.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.3153451</identifier><language>eng</language><publisher>United States</publisher><subject>ALGEBRA ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; MATRICES ; PAULI SPIN OPERATORS ; QUANTUM COMPUTERS ; QUANTUM CRYPTOGRAPHY ; QUANTUM MECHANICS ; QUBITS ; SPIN ; SU-2 GROUPS ; SYMMETRY</subject><ispartof>AIP conference proceedings, 2009, Vol.1131 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21304987$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kibler, Maurice R.</creatorcontrib><title>Bases for Spin Systems and Qudits</title><title>AIP conference proceedings</title><description>There is a growing interest these days for the field of quantum information and quantum computation (for which classical bits are replaced by qubits in dimension 2 and qudits in dimension d). This field is at the crossing of mathematics, informatics and quantum physics. In this work, bases of relevance for spin systems with cyclic symmetry as well as for quantum information and quantum computation are discussed from the theory of angular momentum and group-theoretical methods. This approach is connected to the use of generalized Pauli matrices (in dimension d) arising from a polar decomposition of the group SU{sub 2}. Examples are given for d = 2, 3 and 4.</description><subject>ALGEBRA</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>MATRICES</subject><subject>PAULI SPIN OPERATORS</subject><subject>QUANTUM COMPUTERS</subject><subject>QUANTUM CRYPTOGRAPHY</subject><subject>QUANTUM MECHANICS</subject><subject>QUBITS</subject><subject>SPIN</subject><subject>SU-2 GROUPS</subject><subject>SYMMETRY</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjMtKAzEUQIMoOFYX_kHEdeq9ed1kqcUXFEqpgruSJhkc0RnxxoV_b0FXhwOHI8Q5whzBmyucG3TGOjwQHTqHijz6Q9EBRKu0NS_H4oT5DUBHotCJi5vElWU_fcnN5zDKzQ-3-sEyjUWuv8vQ-FQc9emd69k_Z-L57vZp8aCWq_vHxfVSTRhMUz2Ac1RszZgdhF1NJiQXgYqGqIlSpgx6b9Fnn8mGXV8c4L4iJNLVzMTl33fiNmw5D63m1zyNY81tq9GAjYHMLxFjPVE</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Kibler, Maurice R.</creator><scope>OTOTI</scope></search><sort><creationdate>20090101</creationdate><title>Bases for Spin Systems and Qudits</title><author>Kibler, Maurice R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o183t-f00557d4ec1c508bea38a5907d209277ac7c027d296c6c748bfd501a3871772e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ALGEBRA</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>MATRICES</topic><topic>PAULI SPIN OPERATORS</topic><topic>QUANTUM COMPUTERS</topic><topic>QUANTUM CRYPTOGRAPHY</topic><topic>QUANTUM MECHANICS</topic><topic>QUBITS</topic><topic>SPIN</topic><topic>SU-2 GROUPS</topic><topic>SYMMETRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kibler, Maurice R.</creatorcontrib><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kibler, Maurice R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bases for Spin Systems and Qudits</atitle><btitle>AIP conference proceedings</btitle><date>2009-01-01</date><risdate>2009</risdate><volume>1131</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>There is a growing interest these days for the field of quantum information and quantum computation (for which classical bits are replaced by qubits in dimension 2 and qudits in dimension d). This field is at the crossing of mathematics, informatics and quantum physics. In this work, bases of relevance for spin systems with cyclic symmetry as well as for quantum information and quantum computation are discussed from the theory of angular momentum and group-theoretical methods. This approach is connected to the use of generalized Pauli matrices (in dimension d) arising from a polar decomposition of the group SU{sub 2}. Examples are given for d = 2, 3 and 4.</abstract><cop>United States</cop><doi>10.1063/1.3153451</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2009, Vol.1131 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_osti_scitechconnect_21304987 |
source | AIP Journals Complete |
subjects | ALGEBRA CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS MATRICES PAULI SPIN OPERATORS QUANTUM COMPUTERS QUANTUM CRYPTOGRAPHY QUANTUM MECHANICS QUBITS SPIN SU-2 GROUPS SYMMETRY |
title | Bases for Spin Systems and Qudits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bases%20for%20Spin%20Systems%20and%20Qudits&rft.btitle=AIP%20conference%20proceedings&rft.au=Kibler,%20Maurice%20R.&rft.date=2009-01-01&rft.volume=1131&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.3153451&rft_dat=%3Costi%3E21304987%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |