Topological transformation groups and Dugundji compacta

The presence of an algebraic structure on a space, which is compatible with its topology, in many cases imposes very strong restrictions on the properties of the space itself. Conditions are found which must be satisfied by the actions in order for the phase space to be a d-space (Dugundji compactum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2010-02, Vol.201 (1)
Hauptverfasser: Kozlov, Konstantin L, Chatyrko, Vitalii A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Sbornik. Mathematics
container_volume 201
creator Kozlov, Konstantin L
Chatyrko, Vitalii A
description The presence of an algebraic structure on a space, which is compatible with its topology, in many cases imposes very strong restrictions on the properties of the space itself. Conditions are found which must be satisfied by the actions in order for the phase space to be a d-space (Dugundji compactum). This investigation allows the range of G-spaces that are d-spaces (Dugundji compacta) to be substantially widened. It is shown that all the cases known to the authors where a G-space (a topological group, one of its quotient spaces) is a d-space can be realized using equivariant maps. Bibliography: 39 titles.
doi_str_mv 10.1070/SM2010V201N01ABEH004067;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_21301184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21301184</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_213011843</originalsourceid><addsrcrecordid>eNqNikFPwjAYQBujiYj-hyZe9DD9Osq26KmOAk2gM7OY7ESaMubIaJe1-_9y8Ad4ee8dHkKKwAuBFF6_tjEQ-L5AAmEffA1AIUnf82InVVkVSyE_d-pNSMVLyZQoJNswVWxFziUvVxVbcZlXT4Jx9nyFJoQmWUQziK8vDQmN5glJbtGd9ycAmMckm6BUud51rmmN7nAYtPVHN5x1aJ3FzeDG3mNtD3gxNqM9nFps3LnXJuh7dHPUna8f_jxFj0uu8nXkfGj33rShNj_GWVubsI_JDAjJ6Ox_1y8_T05c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Topological transformation groups and Dugundji compacta</title><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Kozlov, Konstantin L ; Chatyrko, Vitalii A</creator><creatorcontrib>Kozlov, Konstantin L ; Chatyrko, Vitalii A</creatorcontrib><description>The presence of an algebraic structure on a space, which is compatible with its topology, in many cases imposes very strong restrictions on the properties of the space itself. Conditions are found which must be satisfied by the actions in order for the phase space to be a d-space (Dugundji compactum). This investigation allows the range of G-spaces that are d-spaces (Dugundji compacta) to be substantially widened. It is shown that all the cases known to the authors where a G-space (a topological group, one of its quotient spaces) is a d-space can be realized using equivariant maps. Bibliography: 39 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM2010V201N01ABEH004067;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)</identifier><language>eng</language><publisher>United States</publisher><subject>ALGEBRA ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; MATHEMATICAL METHODS AND COMPUTING ; PHASE SPACE ; TOPOLOGY ; TRANSFORMATIONS</subject><ispartof>Sbornik. Mathematics, 2010-02, Vol.201 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21301184$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kozlov, Konstantin L</creatorcontrib><creatorcontrib>Chatyrko, Vitalii A</creatorcontrib><title>Topological transformation groups and Dugundji compacta</title><title>Sbornik. Mathematics</title><description>The presence of an algebraic structure on a space, which is compatible with its topology, in many cases imposes very strong restrictions on the properties of the space itself. Conditions are found which must be satisfied by the actions in order for the phase space to be a d-space (Dugundji compactum). This investigation allows the range of G-spaces that are d-spaces (Dugundji compacta) to be substantially widened. It is shown that all the cases known to the authors where a G-space (a topological group, one of its quotient spaces) is a d-space can be realized using equivariant maps. Bibliography: 39 titles.</description><subject>ALGEBRA</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>PHASE SPACE</subject><subject>TOPOLOGY</subject><subject>TRANSFORMATIONS</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNikFPwjAYQBujiYj-hyZe9DD9Osq26KmOAk2gM7OY7ESaMubIaJe1-_9y8Ad4ee8dHkKKwAuBFF6_tjEQ-L5AAmEffA1AIUnf82InVVkVSyE_d-pNSMVLyZQoJNswVWxFziUvVxVbcZlXT4Jx9nyFJoQmWUQziK8vDQmN5glJbtGd9ycAmMckm6BUud51rmmN7nAYtPVHN5x1aJ3FzeDG3mNtD3gxNqM9nFps3LnXJuh7dHPUna8f_jxFj0uu8nXkfGj33rShNj_GWVubsI_JDAjJ6Ox_1y8_T05c</recordid><startdate>20100228</startdate><enddate>20100228</enddate><creator>Kozlov, Konstantin L</creator><creator>Chatyrko, Vitalii A</creator><scope>OTOTI</scope></search><sort><creationdate>20100228</creationdate><title>Topological transformation groups and Dugundji compacta</title><author>Kozlov, Konstantin L ; Chatyrko, Vitalii A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_213011843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ALGEBRA</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>PHASE SPACE</topic><topic>TOPOLOGY</topic><topic>TRANSFORMATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozlov, Konstantin L</creatorcontrib><creatorcontrib>Chatyrko, Vitalii A</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozlov, Konstantin L</au><au>Chatyrko, Vitalii A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological transformation groups and Dugundji compacta</atitle><jtitle>Sbornik. Mathematics</jtitle><date>2010-02-28</date><risdate>2010</risdate><volume>201</volume><issue>1</issue><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>The presence of an algebraic structure on a space, which is compatible with its topology, in many cases imposes very strong restrictions on the properties of the space itself. Conditions are found which must be satisfied by the actions in order for the phase space to be a d-space (Dugundji compactum). This investigation allows the range of G-spaces that are d-spaces (Dugundji compacta) to be substantially widened. It is shown that all the cases known to the authors where a G-space (a topological group, one of its quotient spaces) is a d-space can be realized using equivariant maps. Bibliography: 39 titles.</abstract><cop>United States</cop><doi>10.1070/SM2010V201N01ABEH004067;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)</doi></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2010-02, Vol.201 (1)
issn 1064-5616
1468-4802
language eng
recordid cdi_osti_scitechconnect_21301184
source Institute of Physics Journals; Alma/SFX Local Collection
subjects ALGEBRA
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
MATHEMATICAL METHODS AND COMPUTING
PHASE SPACE
TOPOLOGY
TRANSFORMATIONS
title Topological transformation groups and Dugundji compacta
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20transformation%20groups%20and%20Dugundji%20compacta&rft.jtitle=Sbornik.%20Mathematics&rft.au=Kozlov,%20Konstantin%20L&rft.date=2010-02-28&rft.volume=201&rft.issue=1&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM2010V201N01ABEH004067;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)&rft_dat=%3Costi%3E21301184%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true