Topological transformation groups and Dugundji compacta
The presence of an algebraic structure on a space, which is compatible with its topology, in many cases imposes very strong restrictions on the properties of the space itself. Conditions are found which must be satisfied by the actions in order for the phase space to be a d-space (Dugundji compactum...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2010-02, Vol.201 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Sbornik. Mathematics |
container_volume | 201 |
creator | Kozlov, Konstantin L Chatyrko, Vitalii A |
description | The presence of an algebraic structure on a space, which is compatible with its topology, in many cases imposes very strong restrictions on the properties of the space itself. Conditions are found which must be satisfied by the actions in order for the phase space to be a d-space (Dugundji compactum). This investigation allows the range of G-spaces that are d-spaces (Dugundji compacta) to be substantially widened. It is shown that all the cases known to the authors where a G-space (a topological group, one of its quotient spaces) is a d-space can be realized using equivariant maps. Bibliography: 39 titles. |
doi_str_mv | 10.1070/SM2010V201N01ABEH004067;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA) |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_21301184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21301184</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_213011843</originalsourceid><addsrcrecordid>eNqNikFPwjAYQBujiYj-hyZe9DD9Osq26KmOAk2gM7OY7ESaMubIaJe1-_9y8Ad4ee8dHkKKwAuBFF6_tjEQ-L5AAmEffA1AIUnf82InVVkVSyE_d-pNSMVLyZQoJNswVWxFziUvVxVbcZlXT4Jx9nyFJoQmWUQziK8vDQmN5glJbtGd9ycAmMckm6BUud51rmmN7nAYtPVHN5x1aJ3FzeDG3mNtD3gxNqM9nFps3LnXJuh7dHPUna8f_jxFj0uu8nXkfGj33rShNj_GWVubsI_JDAjJ6Ox_1y8_T05c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Topological transformation groups and Dugundji compacta</title><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Kozlov, Konstantin L ; Chatyrko, Vitalii A</creator><creatorcontrib>Kozlov, Konstantin L ; Chatyrko, Vitalii A</creatorcontrib><description>The presence of an algebraic structure on a space, which is compatible with its topology, in many cases imposes very strong restrictions on the properties of the space itself. Conditions are found which must be satisfied by the actions in order for the phase space to be a d-space (Dugundji compactum). This investigation allows the range of G-spaces that are d-spaces (Dugundji compacta) to be substantially widened. It is shown that all the cases known to the authors where a G-space (a topological group, one of its quotient spaces) is a d-space can be realized using equivariant maps. Bibliography: 39 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM2010V201N01ABEH004067;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)</identifier><language>eng</language><publisher>United States</publisher><subject>ALGEBRA ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; MATHEMATICAL METHODS AND COMPUTING ; PHASE SPACE ; TOPOLOGY ; TRANSFORMATIONS</subject><ispartof>Sbornik. Mathematics, 2010-02, Vol.201 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21301184$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kozlov, Konstantin L</creatorcontrib><creatorcontrib>Chatyrko, Vitalii A</creatorcontrib><title>Topological transformation groups and Dugundji compacta</title><title>Sbornik. Mathematics</title><description>The presence of an algebraic structure on a space, which is compatible with its topology, in many cases imposes very strong restrictions on the properties of the space itself. Conditions are found which must be satisfied by the actions in order for the phase space to be a d-space (Dugundji compactum). This investigation allows the range of G-spaces that are d-spaces (Dugundji compacta) to be substantially widened. It is shown that all the cases known to the authors where a G-space (a topological group, one of its quotient spaces) is a d-space can be realized using equivariant maps. Bibliography: 39 titles.</description><subject>ALGEBRA</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>PHASE SPACE</subject><subject>TOPOLOGY</subject><subject>TRANSFORMATIONS</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNikFPwjAYQBujiYj-hyZe9DD9Osq26KmOAk2gM7OY7ESaMubIaJe1-_9y8Ad4ee8dHkKKwAuBFF6_tjEQ-L5AAmEffA1AIUnf82InVVkVSyE_d-pNSMVLyZQoJNswVWxFziUvVxVbcZlXT4Jx9nyFJoQmWUQziK8vDQmN5glJbtGd9ycAmMckm6BUud51rmmN7nAYtPVHN5x1aJ3FzeDG3mNtD3gxNqM9nFps3LnXJuh7dHPUna8f_jxFj0uu8nXkfGj33rShNj_GWVubsI_JDAjJ6Ox_1y8_T05c</recordid><startdate>20100228</startdate><enddate>20100228</enddate><creator>Kozlov, Konstantin L</creator><creator>Chatyrko, Vitalii A</creator><scope>OTOTI</scope></search><sort><creationdate>20100228</creationdate><title>Topological transformation groups and Dugundji compacta</title><author>Kozlov, Konstantin L ; Chatyrko, Vitalii A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_213011843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ALGEBRA</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>PHASE SPACE</topic><topic>TOPOLOGY</topic><topic>TRANSFORMATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozlov, Konstantin L</creatorcontrib><creatorcontrib>Chatyrko, Vitalii A</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozlov, Konstantin L</au><au>Chatyrko, Vitalii A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological transformation groups and Dugundji compacta</atitle><jtitle>Sbornik. Mathematics</jtitle><date>2010-02-28</date><risdate>2010</risdate><volume>201</volume><issue>1</issue><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>The presence of an algebraic structure on a space, which is compatible with its topology, in many cases imposes very strong restrictions on the properties of the space itself. Conditions are found which must be satisfied by the actions in order for the phase space to be a d-space (Dugundji compactum). This investigation allows the range of G-spaces that are d-spaces (Dugundji compacta) to be substantially widened. It is shown that all the cases known to the authors where a G-space (a topological group, one of its quotient spaces) is a d-space can be realized using equivariant maps. Bibliography: 39 titles.</abstract><cop>United States</cop><doi>10.1070/SM2010V201N01ABEH004067;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2010-02, Vol.201 (1) |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_osti_scitechconnect_21301184 |
source | Institute of Physics Journals; Alma/SFX Local Collection |
subjects | ALGEBRA GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE MATHEMATICAL METHODS AND COMPUTING PHASE SPACE TOPOLOGY TRANSFORMATIONS |
title | Topological transformation groups and Dugundji compacta |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20transformation%20groups%20and%20Dugundji%20compacta&rft.jtitle=Sbornik.%20Mathematics&rft.au=Kozlov,%20Konstantin%20L&rft.date=2010-02-28&rft.volume=201&rft.issue=1&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM2010V201N01ABEH004067;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)&rft_dat=%3Costi%3E21301184%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |