Design of a Simplified Closed Brayton Cycle for a Space Reactor Application
The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are: 1) to establish a starting concept for the CBCL components specific...
Gespeichert in:
Veröffentlicht in: | AIP conference proceedings 2009-01, Vol.1103 (1), p.486-491 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are: 1) to establish a starting concept for the CBCL components specifications, and 2) to build a demonstrative simulator of CBCL. This preliminary design study is been developed around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes details of the CBCL mechanical design and the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO2 and gas mixtures such as helium and xenon. However, for this first application pure helium will be used as working fluid. Simplified models of heat and mass transfer were developed to simulate thermal components. A new graphical interface was developed for the simulator to display the thermal process variables in steady state and to keep track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL. A set of new results are being produced. These new results help to establish the hot and cold source geometry allowing for price estimating costs for building the actual device. These fresh new results will be presented and discussed. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.3115556 |