3d N = 8 Lorentzian Bagger-Lambert-Gustavsson theory as a scaling limit of 3d superconformal N = 6 Aharony-Bergman-Jafferis-Maldacena theory

We elaborate on the suggestion made in arXiv:0806.3498 that the 3d N=8 superconformal SU(N) Chern-Simons-matter theory of 'Lorentzian' Bagger-Lambert-Gustavson type (L-BLG) can be obtained by a scaling limit (involving sending the level k to infinity and redefining the fields) from the N=6...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles and fields Particles and fields, 2009-02, Vol.79 (4), Article 046002
Hauptverfasser: Antonyan, E., Tseytlin, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physical review. D, Particles and fields
container_volume 79
creator Antonyan, E.
Tseytlin, A. A.
description We elaborate on the suggestion made in arXiv:0806.3498 that the 3d N=8 superconformal SU(N) Chern-Simons-matter theory of 'Lorentzian' Bagger-Lambert-Gustavson type (L-BLG) can be obtained by a scaling limit (involving sending the level k to infinity and redefining the fields) from the N=6 superconformal U(N)xU(N) Chern-Simons-matter theory of Aharony, Bergman, Jafferis, and Maldacena (ABJM). We show that to implement such limit in a consistent way one is to extend the ABJM theory by an Abelian 'ghost' multiplet. The corresponding limit at the 3-algebra level also requires extending the nonantisymmetric Bagger-Lambert 3-algebra underlying the ABJM theory by a negative-norm generator. We draw analogy with similar scaling limits discussed previously for bosonic Chern-Simons theory and comment on some implications of this relation between the ABJM and L-BLG theories.
doi_str_mv 10.1103/PhysRevD.79.046002
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21266338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_79_046002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-cbb38c79212ba0c25dfa6472ea447dbac038f2c9da6274a2d0cecfb9ca7c1d7d3</originalsourceid><addsrcrecordid>eNo1kMtOwzAURCMEEqXwA6wssXZx7CROFixaHgVUHkKwjm5u7DYosSvbrRS-gY8m0LKaWYyORieKzmM2iWMmLl9XvX9T25uJLCYsyRjjB9EoTlNGucjyw32XRZEfRyfefzImeCblKPoWNXkmVyQnC-uUCV8NGDKD5VI5uoCuUi7Q-cYH2HpvDQkrZV1PwBMgHqFtzJK0TdcEYjUZUH6zVg6t0dZ10P6RMzJdgbOmpzPllh0Y-ghaK9d4-gRtDagM7Lmn0ZGG1quzfY6jj7vb9-t7uniZP1xPFxS5TAPFqhI5yoLHvAKGPK01ZInkCpJE1hUgE7nmWNSQcZkArxkq1FWBIDGuZS3G0cWOa31oSo9NULgaXhuFoRyoWSZEPqz4boXOeu-ULteu6cD1ZczKX-vlv_VSFuXOuvgBV-F45w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3d N = 8 Lorentzian Bagger-Lambert-Gustavsson theory as a scaling limit of 3d superconformal N = 6 Aharony-Bergman-Jafferis-Maldacena theory</title><source>American Physical Society Journals</source><creator>Antonyan, E. ; Tseytlin, A. A.</creator><creatorcontrib>Antonyan, E. ; Tseytlin, A. A.</creatorcontrib><description>We elaborate on the suggestion made in arXiv:0806.3498 that the 3d N=8 superconformal SU(N) Chern-Simons-matter theory of 'Lorentzian' Bagger-Lambert-Gustavson type (L-BLG) can be obtained by a scaling limit (involving sending the level k to infinity and redefining the fields) from the N=6 superconformal U(N)xU(N) Chern-Simons-matter theory of Aharony, Bergman, Jafferis, and Maldacena (ABJM). We show that to implement such limit in a consistent way one is to extend the ABJM theory by an Abelian 'ghost' multiplet. The corresponding limit at the 3-algebra level also requires extending the nonantisymmetric Bagger-Lambert 3-algebra underlying the ABJM theory by a negative-norm generator. We draw analogy with similar scaling limits discussed previously for bosonic Chern-Simons theory and comment on some implications of this relation between the ABJM and L-BLG theories.</description><identifier>ISSN: 1550-7998</identifier><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1550-2368</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.79.046002</identifier><language>eng</language><publisher>United States</publisher><subject>LORENTZ INVARIANCE ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUANTUM FIELD THEORY ; SCALING ; SIMULATION ; SU GROUPS ; U GROUPS</subject><ispartof>Physical review. D, Particles and fields, 2009-02, Vol.79 (4), Article 046002</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-cbb38c79212ba0c25dfa6472ea447dbac038f2c9da6274a2d0cecfb9ca7c1d7d3</citedby><cites>FETCH-LOGICAL-c275t-cbb38c79212ba0c25dfa6472ea447dbac038f2c9da6274a2d0cecfb9ca7c1d7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21266338$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Antonyan, E.</creatorcontrib><creatorcontrib>Tseytlin, A. A.</creatorcontrib><title>3d N = 8 Lorentzian Bagger-Lambert-Gustavsson theory as a scaling limit of 3d superconformal N = 6 Aharony-Bergman-Jafferis-Maldacena theory</title><title>Physical review. D, Particles and fields</title><description>We elaborate on the suggestion made in arXiv:0806.3498 that the 3d N=8 superconformal SU(N) Chern-Simons-matter theory of 'Lorentzian' Bagger-Lambert-Gustavson type (L-BLG) can be obtained by a scaling limit (involving sending the level k to infinity and redefining the fields) from the N=6 superconformal U(N)xU(N) Chern-Simons-matter theory of Aharony, Bergman, Jafferis, and Maldacena (ABJM). We show that to implement such limit in a consistent way one is to extend the ABJM theory by an Abelian 'ghost' multiplet. The corresponding limit at the 3-algebra level also requires extending the nonantisymmetric Bagger-Lambert 3-algebra underlying the ABJM theory by a negative-norm generator. We draw analogy with similar scaling limits discussed previously for bosonic Chern-Simons theory and comment on some implications of this relation between the ABJM and L-BLG theories.</description><subject>LORENTZ INVARIANCE</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUANTUM FIELD THEORY</subject><subject>SCALING</subject><subject>SIMULATION</subject><subject>SU GROUPS</subject><subject>U GROUPS</subject><issn>1550-7998</issn><issn>0556-2821</issn><issn>1550-2368</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo1kMtOwzAURCMEEqXwA6wssXZx7CROFixaHgVUHkKwjm5u7DYosSvbrRS-gY8m0LKaWYyORieKzmM2iWMmLl9XvX9T25uJLCYsyRjjB9EoTlNGucjyw32XRZEfRyfefzImeCblKPoWNXkmVyQnC-uUCV8NGDKD5VI5uoCuUi7Q-cYH2HpvDQkrZV1PwBMgHqFtzJK0TdcEYjUZUH6zVg6t0dZ10P6RMzJdgbOmpzPllh0Y-ghaK9d4-gRtDagM7Lmn0ZGG1quzfY6jj7vb9-t7uniZP1xPFxS5TAPFqhI5yoLHvAKGPK01ZInkCpJE1hUgE7nmWNSQcZkArxkq1FWBIDGuZS3G0cWOa31oSo9NULgaXhuFoRyoWSZEPqz4boXOeu-ULteu6cD1ZczKX-vlv_VSFuXOuvgBV-F45w</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Antonyan, E.</creator><creator>Tseytlin, A. A.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20090201</creationdate><title>3d N = 8 Lorentzian Bagger-Lambert-Gustavsson theory as a scaling limit of 3d superconformal N = 6 Aharony-Bergman-Jafferis-Maldacena theory</title><author>Antonyan, E. ; Tseytlin, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-cbb38c79212ba0c25dfa6472ea447dbac038f2c9da6274a2d0cecfb9ca7c1d7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>LORENTZ INVARIANCE</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUANTUM FIELD THEORY</topic><topic>SCALING</topic><topic>SIMULATION</topic><topic>SU GROUPS</topic><topic>U GROUPS</topic><toplevel>online_resources</toplevel><creatorcontrib>Antonyan, E.</creatorcontrib><creatorcontrib>Tseytlin, A. A.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonyan, E.</au><au>Tseytlin, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3d N = 8 Lorentzian Bagger-Lambert-Gustavsson theory as a scaling limit of 3d superconformal N = 6 Aharony-Bergman-Jafferis-Maldacena theory</atitle><jtitle>Physical review. D, Particles and fields</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>79</volume><issue>4</issue><artnum>046002</artnum><issn>1550-7998</issn><issn>0556-2821</issn><eissn>1550-2368</eissn><eissn>1089-4918</eissn><abstract>We elaborate on the suggestion made in arXiv:0806.3498 that the 3d N=8 superconformal SU(N) Chern-Simons-matter theory of 'Lorentzian' Bagger-Lambert-Gustavson type (L-BLG) can be obtained by a scaling limit (involving sending the level k to infinity and redefining the fields) from the N=6 superconformal U(N)xU(N) Chern-Simons-matter theory of Aharony, Bergman, Jafferis, and Maldacena (ABJM). We show that to implement such limit in a consistent way one is to extend the ABJM theory by an Abelian 'ghost' multiplet. The corresponding limit at the 3-algebra level also requires extending the nonantisymmetric Bagger-Lambert 3-algebra underlying the ABJM theory by a negative-norm generator. We draw analogy with similar scaling limits discussed previously for bosonic Chern-Simons theory and comment on some implications of this relation between the ABJM and L-BLG theories.</abstract><cop>United States</cop><doi>10.1103/PhysRevD.79.046002</doi></addata></record>
fulltext fulltext
identifier ISSN: 1550-7998
ispartof Physical review. D, Particles and fields, 2009-02, Vol.79 (4), Article 046002
issn 1550-7998
0556-2821
1550-2368
1089-4918
language eng
recordid cdi_osti_scitechconnect_21266338
source American Physical Society Journals
subjects LORENTZ INVARIANCE
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
QUANTUM FIELD THEORY
SCALING
SIMULATION
SU GROUPS
U GROUPS
title 3d N = 8 Lorentzian Bagger-Lambert-Gustavsson theory as a scaling limit of 3d superconformal N = 6 Aharony-Bergman-Jafferis-Maldacena theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3d%20N%20=%208%20Lorentzian%20Bagger-Lambert-Gustavsson%20theory%20as%20a%20scaling%20limit%20of%203d%20superconformal%20N%20=%206%20Aharony-Bergman-Jafferis-Maldacena%20theory&rft.jtitle=Physical%20review.%20D,%20Particles%20and%20fields&rft.au=Antonyan,%20E.&rft.date=2009-02-01&rft.volume=79&rft.issue=4&rft.artnum=046002&rft.issn=1550-7998&rft.eissn=1550-2368&rft_id=info:doi/10.1103/PhysRevD.79.046002&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevD_79_046002%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true