Schwartzian derivative for multidimensional maps and flows

A generalization of Schwartzian derivative to maps and flows in the space R{sup n} and in infinite-dimensional spaces is introduced. It is used to study the type of stability loss (soft or hard) for fixed points and periodic trajectories of diffeo-morphisms and flows. In particular, an example of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 1999-02, Vol.190 (1)
1. Verfasser: Sataev, E A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Sbornik. Mathematics
container_volume 190
creator Sataev, E A
description A generalization of Schwartzian derivative to maps and flows in the space R{sup n} and in infinite-dimensional spaces is introduced. It is used to study the type of stability loss (soft or hard) for fixed points and periodic trajectories of diffeo-morphisms and flows. In particular, an example of a partial differential equation of reaction-diffusion type is presented for which the conditions of soft loss of stability of a spatially homogeneous solution are verified.
doi_str_mv 10.1070/SM1999V190N01ABEH000380;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_21202844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21202844</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_212028443</originalsourceid><addsrcrecordid>eNqNjE9LwzAcQIMoOP98h4AXPVR_6brazlMs2VZwqXSZ0NMIacoibSJN3MBP7w5-AE_vHR4PIUHgkcAzPG3WJM_zD5IDB0Jf2QoAphm8FNWWi7qpFiV_34p5yQWrORVlxekbFdW6LBhn9bKhS8aL5r6kjD6coQlJ0ixKMojPTw5pEs1Skl6iK-8_T-NZTLIJmm_U_ijH8GOkxa0ezUEGc9C4cyMevvtgWjNo642zsseD_PJY2hZ3vTv6G3TRyd7r2z9eo7sFE8Uqcj6YnVcmaLVXzlqtwi4mMcRZkkz_V_0CYatPqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Schwartzian derivative for multidimensional maps and flows</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Sataev, E A</creator><creatorcontrib>Sataev, E A</creatorcontrib><description>A generalization of Schwartzian derivative to maps and flows in the space R{sup n} and in infinite-dimensional spaces is introduced. It is used to study the type of stability loss (soft or hard) for fixed points and periodic trajectories of diffeo-morphisms and flows. In particular, an example of a partial differential equation of reaction-diffusion type is presented for which the conditions of soft loss of stability of a spatially homogeneous solution are verified.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM1999V190N01ABEH000380;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)</identifier><language>eng</language><publisher>United States</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DIFFUSION ; MATHEMATICAL SOLUTIONS ; PARTIAL DIFFERENTIAL EQUATIONS ; PERIODICITY</subject><ispartof>Sbornik. Mathematics, 1999-02, Vol.190 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21202844$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sataev, E A</creatorcontrib><title>Schwartzian derivative for multidimensional maps and flows</title><title>Sbornik. Mathematics</title><description>A generalization of Schwartzian derivative to maps and flows in the space R{sup n} and in infinite-dimensional spaces is introduced. It is used to study the type of stability loss (soft or hard) for fixed points and periodic trajectories of diffeo-morphisms and flows. In particular, an example of a partial differential equation of reaction-diffusion type is presented for which the conditions of soft loss of stability of a spatially homogeneous solution are verified.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DIFFUSION</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PERIODICITY</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqNjE9LwzAcQIMoOP98h4AXPVR_6brazlMs2VZwqXSZ0NMIacoibSJN3MBP7w5-AE_vHR4PIUHgkcAzPG3WJM_zD5IDB0Jf2QoAphm8FNWWi7qpFiV_34p5yQWrORVlxekbFdW6LBhn9bKhS8aL5r6kjD6coQlJ0ixKMojPTw5pEs1Skl6iK-8_T-NZTLIJmm_U_ijH8GOkxa0ezUEGc9C4cyMevvtgWjNo642zsseD_PJY2hZ3vTv6G3TRyd7r2z9eo7sFE8Uqcj6YnVcmaLVXzlqtwi4mMcRZkkz_V_0CYatPqw</recordid><startdate>19990228</startdate><enddate>19990228</enddate><creator>Sataev, E A</creator><scope>OTOTI</scope></search><sort><creationdate>19990228</creationdate><title>Schwartzian derivative for multidimensional maps and flows</title><author>Sataev, E A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_212028443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DIFFUSION</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PERIODICITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sataev, E A</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sataev, E A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schwartzian derivative for multidimensional maps and flows</atitle><jtitle>Sbornik. Mathematics</jtitle><date>1999-02-28</date><risdate>1999</risdate><volume>190</volume><issue>1</issue><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>A generalization of Schwartzian derivative to maps and flows in the space R{sup n} and in infinite-dimensional spaces is introduced. It is used to study the type of stability loss (soft or hard) for fixed points and periodic trajectories of diffeo-morphisms and flows. In particular, an example of a partial differential equation of reaction-diffusion type is presented for which the conditions of soft loss of stability of a spatially homogeneous solution are verified.</abstract><cop>United States</cop><doi>10.1070/SM1999V190N01ABEH000380;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)</doi></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 1999-02, Vol.190 (1)
issn 1064-5616
1468-4802
language eng
recordid cdi_osti_scitechconnect_21202844
source IOP Publishing Journals; Alma/SFX Local Collection
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DIFFUSION
MATHEMATICAL SOLUTIONS
PARTIAL DIFFERENTIAL EQUATIONS
PERIODICITY
title Schwartzian derivative for multidimensional maps and flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schwartzian%20derivative%20for%20multidimensional%20maps%20and%20flows&rft.jtitle=Sbornik.%20Mathematics&rft.au=Sataev,%20E%20A&rft.date=1999-02-28&rft.volume=190&rft.issue=1&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM1999V190N01ABEH000380;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)&rft_dat=%3Costi%3E21202844%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true