Adiabatic nonlinear probes of one-dimensional bose gases
We discuss two complimentary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law scalings for the number of excitations with the ramp...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2008-12, Vol.101 (23), p.230402-230402, Article 230402 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230402 |
---|---|
container_issue | 23 |
container_start_page | 230402 |
container_title | Physical review letters |
container_volume | 101 |
creator | De Grandi, C Barankov, R A Polkovnikov, A |
description | We discuss two complimentary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law scalings for the number of excitations with the ramping rate in the regime where the conventional linear response approach fails. We show that the exponent of this power law is sensitive to the interaction strength. In particular, the response is larger, or less adiabatic, for strongly (weakly) interacting bosons for the loading (merging) problem. Our results illustrate that in general the nonlinear response to slow relevant perturbations can be a powerful tool for characterizing properties of interacting systems. |
doi_str_mv | 10.1103/PhysRevLett.101.230402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21179952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69922900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-b06a294d6c0bf160c6278a6c3d078562c2b7e398cd62b6d27be1863e4c5026363</originalsourceid><addsrcrecordid>eNpNkN1KAzEQRoMotlZfoSwI3m2dSXazm8tS_IOCInodkuzURrZJ3WyFvr0rLejVwHC-b4bD2BRhhgji9mW9T6_0vaS-nyHgjAsogJ-wMUKl8gqxOGVjAIG5AqhG7CKlTwBALutzNkKFKEpej1k9b7yxpvcuCzG0PpDpsm0XLaUsrrIYKG_8hkLyMZg2szFR9mESpUt2tjJtoqvjnLD3-7u3xWO-fH54WsyXuRN12ecWpOGqaKQDu0IJTvKqNtKJBqq6lNxxW5FQtWskt7LhlSWspaDClcClkGLCrg-9MfVeJ-d7cmsXQyDXa45YKVXygbo5UMPrXztKvd745KhtTaC4S1oqxflgYgDlAXRdTKmjld52fmO6vUbQv2b1P7PDDvXB7BCcHi_s7Iaav9hRpfgBN451uA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69922900</pqid></control><display><type>article</type><title>Adiabatic nonlinear probes of one-dimensional bose gases</title><source>American Physical Society Journals</source><creator>De Grandi, C ; Barankov, R A ; Polkovnikov, A</creator><creatorcontrib>De Grandi, C ; Barankov, R A ; Polkovnikov, A</creatorcontrib><description>We discuss two complimentary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law scalings for the number of excitations with the ramping rate in the regime where the conventional linear response approach fails. We show that the exponent of this power law is sensitive to the interaction strength. In particular, the response is larger, or less adiabatic, for strongly (weakly) interacting bosons for the loading (merging) problem. Our results illustrate that in general the nonlinear response to slow relevant perturbations can be a powerful tool for characterizing properties of interacting systems.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.101.230402</identifier><identifier>PMID: 19113528</identifier><language>eng</language><publisher>United States</publisher><subject>BOSE-EINSTEIN GAS ; BOSONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; EXCITATION ; INTERACTING BOSON MODEL ; MAPPING ; NONLINEAR PROBLEMS ; ONE-DIMENSIONAL CALCULATIONS ; PERTURBATION THEORY ; SINE-GORDON EQUATION</subject><ispartof>Physical review letters, 2008-12, Vol.101 (23), p.230402-230402, Article 230402</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-b06a294d6c0bf160c6278a6c3d078562c2b7e398cd62b6d27be1863e4c5026363</citedby><cites>FETCH-LOGICAL-c385t-b06a294d6c0bf160c6278a6c3d078562c2b7e398cd62b6d27be1863e4c5026363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19113528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21179952$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>De Grandi, C</creatorcontrib><creatorcontrib>Barankov, R A</creatorcontrib><creatorcontrib>Polkovnikov, A</creatorcontrib><title>Adiabatic nonlinear probes of one-dimensional bose gases</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We discuss two complimentary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law scalings for the number of excitations with the ramping rate in the regime where the conventional linear response approach fails. We show that the exponent of this power law is sensitive to the interaction strength. In particular, the response is larger, or less adiabatic, for strongly (weakly) interacting bosons for the loading (merging) problem. Our results illustrate that in general the nonlinear response to slow relevant perturbations can be a powerful tool for characterizing properties of interacting systems.</description><subject>BOSE-EINSTEIN GAS</subject><subject>BOSONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>EXCITATION</subject><subject>INTERACTING BOSON MODEL</subject><subject>MAPPING</subject><subject>NONLINEAR PROBLEMS</subject><subject>ONE-DIMENSIONAL CALCULATIONS</subject><subject>PERTURBATION THEORY</subject><subject>SINE-GORDON EQUATION</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpNkN1KAzEQRoMotlZfoSwI3m2dSXazm8tS_IOCInodkuzURrZJ3WyFvr0rLejVwHC-b4bD2BRhhgji9mW9T6_0vaS-nyHgjAsogJ-wMUKl8gqxOGVjAIG5AqhG7CKlTwBALutzNkKFKEpej1k9b7yxpvcuCzG0PpDpsm0XLaUsrrIYKG_8hkLyMZg2szFR9mESpUt2tjJtoqvjnLD3-7u3xWO-fH54WsyXuRN12ecWpOGqaKQDu0IJTvKqNtKJBqq6lNxxW5FQtWskt7LhlSWspaDClcClkGLCrg-9MfVeJ-d7cmsXQyDXa45YKVXygbo5UMPrXztKvd745KhtTaC4S1oqxflgYgDlAXRdTKmjld52fmO6vUbQv2b1P7PDDvXB7BCcHi_s7Iaav9hRpfgBN451uA</recordid><startdate>20081205</startdate><enddate>20081205</enddate><creator>De Grandi, C</creator><creator>Barankov, R A</creator><creator>Polkovnikov, A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20081205</creationdate><title>Adiabatic nonlinear probes of one-dimensional bose gases</title><author>De Grandi, C ; Barankov, R A ; Polkovnikov, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-b06a294d6c0bf160c6278a6c3d078562c2b7e398cd62b6d27be1863e4c5026363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>BOSE-EINSTEIN GAS</topic><topic>BOSONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>EXCITATION</topic><topic>INTERACTING BOSON MODEL</topic><topic>MAPPING</topic><topic>NONLINEAR PROBLEMS</topic><topic>ONE-DIMENSIONAL CALCULATIONS</topic><topic>PERTURBATION THEORY</topic><topic>SINE-GORDON EQUATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Grandi, C</creatorcontrib><creatorcontrib>Barankov, R A</creatorcontrib><creatorcontrib>Polkovnikov, A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Grandi, C</au><au>Barankov, R A</au><au>Polkovnikov, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adiabatic nonlinear probes of one-dimensional bose gases</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2008-12-05</date><risdate>2008</risdate><volume>101</volume><issue>23</issue><spage>230402</spage><epage>230402</epage><pages>230402-230402</pages><artnum>230402</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We discuss two complimentary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law scalings for the number of excitations with the ramping rate in the regime where the conventional linear response approach fails. We show that the exponent of this power law is sensitive to the interaction strength. In particular, the response is larger, or less adiabatic, for strongly (weakly) interacting bosons for the loading (merging) problem. Our results illustrate that in general the nonlinear response to slow relevant perturbations can be a powerful tool for characterizing properties of interacting systems.</abstract><cop>United States</cop><pmid>19113528</pmid><doi>10.1103/PhysRevLett.101.230402</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2008-12, Vol.101 (23), p.230402-230402, Article 230402 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_21179952 |
source | American Physical Society Journals |
subjects | BOSE-EINSTEIN GAS BOSONS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS EXCITATION INTERACTING BOSON MODEL MAPPING NONLINEAR PROBLEMS ONE-DIMENSIONAL CALCULATIONS PERTURBATION THEORY SINE-GORDON EQUATION |
title | Adiabatic nonlinear probes of one-dimensional bose gases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adiabatic%20nonlinear%20probes%20of%20one-dimensional%20bose%20gases&rft.jtitle=Physical%20review%20letters&rft.au=De%20Grandi,%20C&rft.date=2008-12-05&rft.volume=101&rft.issue=23&rft.spage=230402&rft.epage=230402&rft.pages=230402-230402&rft.artnum=230402&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.101.230402&rft_dat=%3Cproquest_osti_%3E69922900%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69922900&rft_id=info:pmid/19113528&rfr_iscdi=true |