Adiabatic nonlinear probes of one-dimensional bose gases

We discuss two complimentary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law scalings for the number of excitations with the ramp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2008-12, Vol.101 (23), p.230402-230402, Article 230402
Hauptverfasser: De Grandi, C, Barankov, R A, Polkovnikov, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230402
container_issue 23
container_start_page 230402
container_title Physical review letters
container_volume 101
creator De Grandi, C
Barankov, R A
Polkovnikov, A
description We discuss two complimentary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law scalings for the number of excitations with the ramping rate in the regime where the conventional linear response approach fails. We show that the exponent of this power law is sensitive to the interaction strength. In particular, the response is larger, or less adiabatic, for strongly (weakly) interacting bosons for the loading (merging) problem. Our results illustrate that in general the nonlinear response to slow relevant perturbations can be a powerful tool for characterizing properties of interacting systems.
doi_str_mv 10.1103/PhysRevLett.101.230402
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21179952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69922900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-b06a294d6c0bf160c6278a6c3d078562c2b7e398cd62b6d27be1863e4c5026363</originalsourceid><addsrcrecordid>eNpNkN1KAzEQRoMotlZfoSwI3m2dSXazm8tS_IOCInodkuzURrZJ3WyFvr0rLejVwHC-b4bD2BRhhgji9mW9T6_0vaS-nyHgjAsogJ-wMUKl8gqxOGVjAIG5AqhG7CKlTwBALutzNkKFKEpej1k9b7yxpvcuCzG0PpDpsm0XLaUsrrIYKG_8hkLyMZg2szFR9mESpUt2tjJtoqvjnLD3-7u3xWO-fH54WsyXuRN12ecWpOGqaKQDu0IJTvKqNtKJBqq6lNxxW5FQtWskt7LhlSWspaDClcClkGLCrg-9MfVeJ-d7cmsXQyDXa45YKVXygbo5UMPrXztKvd745KhtTaC4S1oqxflgYgDlAXRdTKmjld52fmO6vUbQv2b1P7PDDvXB7BCcHi_s7Iaav9hRpfgBN451uA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69922900</pqid></control><display><type>article</type><title>Adiabatic nonlinear probes of one-dimensional bose gases</title><source>American Physical Society Journals</source><creator>De Grandi, C ; Barankov, R A ; Polkovnikov, A</creator><creatorcontrib>De Grandi, C ; Barankov, R A ; Polkovnikov, A</creatorcontrib><description>We discuss two complimentary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law scalings for the number of excitations with the ramping rate in the regime where the conventional linear response approach fails. We show that the exponent of this power law is sensitive to the interaction strength. In particular, the response is larger, or less adiabatic, for strongly (weakly) interacting bosons for the loading (merging) problem. Our results illustrate that in general the nonlinear response to slow relevant perturbations can be a powerful tool for characterizing properties of interacting systems.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.101.230402</identifier><identifier>PMID: 19113528</identifier><language>eng</language><publisher>United States</publisher><subject>BOSE-EINSTEIN GAS ; BOSONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; EXCITATION ; INTERACTING BOSON MODEL ; MAPPING ; NONLINEAR PROBLEMS ; ONE-DIMENSIONAL CALCULATIONS ; PERTURBATION THEORY ; SINE-GORDON EQUATION</subject><ispartof>Physical review letters, 2008-12, Vol.101 (23), p.230402-230402, Article 230402</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-b06a294d6c0bf160c6278a6c3d078562c2b7e398cd62b6d27be1863e4c5026363</citedby><cites>FETCH-LOGICAL-c385t-b06a294d6c0bf160c6278a6c3d078562c2b7e398cd62b6d27be1863e4c5026363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19113528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21179952$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>De Grandi, C</creatorcontrib><creatorcontrib>Barankov, R A</creatorcontrib><creatorcontrib>Polkovnikov, A</creatorcontrib><title>Adiabatic nonlinear probes of one-dimensional bose gases</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We discuss two complimentary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law scalings for the number of excitations with the ramping rate in the regime where the conventional linear response approach fails. We show that the exponent of this power law is sensitive to the interaction strength. In particular, the response is larger, or less adiabatic, for strongly (weakly) interacting bosons for the loading (merging) problem. Our results illustrate that in general the nonlinear response to slow relevant perturbations can be a powerful tool for characterizing properties of interacting systems.</description><subject>BOSE-EINSTEIN GAS</subject><subject>BOSONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>EXCITATION</subject><subject>INTERACTING BOSON MODEL</subject><subject>MAPPING</subject><subject>NONLINEAR PROBLEMS</subject><subject>ONE-DIMENSIONAL CALCULATIONS</subject><subject>PERTURBATION THEORY</subject><subject>SINE-GORDON EQUATION</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpNkN1KAzEQRoMotlZfoSwI3m2dSXazm8tS_IOCInodkuzURrZJ3WyFvr0rLejVwHC-b4bD2BRhhgji9mW9T6_0vaS-nyHgjAsogJ-wMUKl8gqxOGVjAIG5AqhG7CKlTwBALutzNkKFKEpej1k9b7yxpvcuCzG0PpDpsm0XLaUsrrIYKG_8hkLyMZg2szFR9mESpUt2tjJtoqvjnLD3-7u3xWO-fH54WsyXuRN12ecWpOGqaKQDu0IJTvKqNtKJBqq6lNxxW5FQtWskt7LhlSWspaDClcClkGLCrg-9MfVeJ-d7cmsXQyDXa45YKVXygbo5UMPrXztKvd745KhtTaC4S1oqxflgYgDlAXRdTKmjld52fmO6vUbQv2b1P7PDDvXB7BCcHi_s7Iaav9hRpfgBN451uA</recordid><startdate>20081205</startdate><enddate>20081205</enddate><creator>De Grandi, C</creator><creator>Barankov, R A</creator><creator>Polkovnikov, A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20081205</creationdate><title>Adiabatic nonlinear probes of one-dimensional bose gases</title><author>De Grandi, C ; Barankov, R A ; Polkovnikov, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-b06a294d6c0bf160c6278a6c3d078562c2b7e398cd62b6d27be1863e4c5026363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>BOSE-EINSTEIN GAS</topic><topic>BOSONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>EXCITATION</topic><topic>INTERACTING BOSON MODEL</topic><topic>MAPPING</topic><topic>NONLINEAR PROBLEMS</topic><topic>ONE-DIMENSIONAL CALCULATIONS</topic><topic>PERTURBATION THEORY</topic><topic>SINE-GORDON EQUATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Grandi, C</creatorcontrib><creatorcontrib>Barankov, R A</creatorcontrib><creatorcontrib>Polkovnikov, A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Grandi, C</au><au>Barankov, R A</au><au>Polkovnikov, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adiabatic nonlinear probes of one-dimensional bose gases</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2008-12-05</date><risdate>2008</risdate><volume>101</volume><issue>23</issue><spage>230402</spage><epage>230402</epage><pages>230402-230402</pages><artnum>230402</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We discuss two complimentary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law scalings for the number of excitations with the ramping rate in the regime where the conventional linear response approach fails. We show that the exponent of this power law is sensitive to the interaction strength. In particular, the response is larger, or less adiabatic, for strongly (weakly) interacting bosons for the loading (merging) problem. Our results illustrate that in general the nonlinear response to slow relevant perturbations can be a powerful tool for characterizing properties of interacting systems.</abstract><cop>United States</cop><pmid>19113528</pmid><doi>10.1103/PhysRevLett.101.230402</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2008-12, Vol.101 (23), p.230402-230402, Article 230402
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_21179952
source American Physical Society Journals
subjects BOSE-EINSTEIN GAS
BOSONS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
EXCITATION
INTERACTING BOSON MODEL
MAPPING
NONLINEAR PROBLEMS
ONE-DIMENSIONAL CALCULATIONS
PERTURBATION THEORY
SINE-GORDON EQUATION
title Adiabatic nonlinear probes of one-dimensional bose gases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adiabatic%20nonlinear%20probes%20of%20one-dimensional%20bose%20gases&rft.jtitle=Physical%20review%20letters&rft.au=De%20Grandi,%20C&rft.date=2008-12-05&rft.volume=101&rft.issue=23&rft.spage=230402&rft.epage=230402&rft.pages=230402-230402&rft.artnum=230402&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.101.230402&rft_dat=%3Cproquest_osti_%3E69922900%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69922900&rft_id=info:pmid/19113528&rfr_iscdi=true