Do Maximum Intensity Projection Images Truly Capture Tumor Motion?

Purpose For the treatment of patients with lung cancer, internal target volume frequently is determined by using maximum intensity projection (MIP) images generated by means of four-dimensional computed tomography (4D-CT). To check the accuracy of MIPs for various target motions, especially for targ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of radiation oncology, biology, physics biology, physics, 2009-02, Vol.73 (2), p.618-625
Hauptverfasser: Park, Kwangyoul, Ph.D, Huang, Long, M.S, Gagne, Havaleh, M.D, Papiez, Lech, Ph.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 625
container_issue 2
container_start_page 618
container_title International journal of radiation oncology, biology, physics
container_volume 73
creator Park, Kwangyoul, Ph.D
Huang, Long, M.S
Gagne, Havaleh, M.D
Papiez, Lech, Ph.D
description Purpose For the treatment of patients with lung cancer, internal target volume frequently is determined by using maximum intensity projection (MIP) images generated by means of four-dimensional computed tomography (4D-CT). To check the accuracy of MIPs for various target motions, especially for targets moving irregularly, we performed phantom studies using a programmable dynamic lung phantom. Methods and Materials A custom-built programmable lung phantom was used to simulate irregular target motions along the superior-inferior direction. After scanning in helical mode using 4D-CT, reconstructed phase and MIP images were imported into the Pinnacle 8.0 treatment planning system for image analysis. Results For all regular periodic target motions with constant amplitude and period, the measured MIP target span along the superior-inferior direction was accurate within 2–3 mm of the real target motion span. For irregular target motions with varying amplitudes and periods, the measured MIP target span systematically underrepresented the real range of target motion by more than 1 cm in some cases. The difference between measured MIP target span and real target span decreased as the target moved faster. We associate these discrepancies with the fact that current reconstruction algorithms of commercial 4D-CT are based on phase binning. Conclusions According to our phantom measurements, MIP accurately reflects the range of target motion for regular target motion. However, it generally underestimates the range of target motion when the motion is irregular in amplitude and periodicity. Clinical internal target volume determination using MIP requires caution, especially when there is breathing irregularity.
doi_str_mv 10.1016/j.ijrobp.2008.10.008
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21172609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360301608035608</els_id><sourcerecordid>66820875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-1ffa767106fdd6d7d4b996cde3b49fe6ee3e6a2f19c87ba7ae8013a0a09ec53d3</originalsourceid><addsrcrecordid>eNqFkV-L1DAUxYO4uOPqNxApCL51vGnapH1RdPw3sIuCI_gW0uRWU9tkTFrZ-famdEDYl33Jgcvv3px7LiHPKGwpUP6q39o--Pa4LQDqVNomeUA2tBZNzqrqx0OyAcYhZwm-JI9j7AGAUlE-Ipe0oaWAgm_Iu_c-u1G3dpzHbO8mdNFOp-xr8D3qyXqX7Uf1E2N2CPNwynbqOM0Bs8M8-pDd-IV484RcdGqI-PSsV-T7xw-H3ef8-sun_e7tda7Lkk057ToluKDAO2O4EaZsm4Zrg6wtmw45IkOuio42uhatEgproEyBggZ1xQy7Ii_WuT5OVkZtJ9S_tHcuOZVF2qzg0CTq5Uodg_8zY5zkaKPGYVAO_Rwl53UBtagSWK6gDj7GgJ08BjuqcJIU5JKw7OWasFwSXqpJUtvz8_y5HdH8bzpHmoDXK4Api78Ww2IVnUZjw-LUeHvfD3cH6ME6q9XwG08Yez8Hl3KWVMZCgvy2XHk5MtTAqvSyf_J2oyk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66820875</pqid></control><display><type>article</type><title>Do Maximum Intensity Projection Images Truly Capture Tumor Motion?</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Park, Kwangyoul, Ph.D ; Huang, Long, M.S ; Gagne, Havaleh, M.D ; Papiez, Lech, Ph.D</creator><creatorcontrib>Park, Kwangyoul, Ph.D ; Huang, Long, M.S ; Gagne, Havaleh, M.D ; Papiez, Lech, Ph.D</creatorcontrib><description>Purpose For the treatment of patients with lung cancer, internal target volume frequently is determined by using maximum intensity projection (MIP) images generated by means of four-dimensional computed tomography (4D-CT). To check the accuracy of MIPs for various target motions, especially for targets moving irregularly, we performed phantom studies using a programmable dynamic lung phantom. Methods and Materials A custom-built programmable lung phantom was used to simulate irregular target motions along the superior-inferior direction. After scanning in helical mode using 4D-CT, reconstructed phase and MIP images were imported into the Pinnacle 8.0 treatment planning system for image analysis. Results For all regular periodic target motions with constant amplitude and period, the measured MIP target span along the superior-inferior direction was accurate within 2–3 mm of the real target motion span. For irregular target motions with varying amplitudes and periods, the measured MIP target span systematically underrepresented the real range of target motion by more than 1 cm in some cases. The difference between measured MIP target span and real target span decreased as the target moved faster. We associate these discrepancies with the fact that current reconstruction algorithms of commercial 4D-CT are based on phase binning. Conclusions According to our phantom measurements, MIP accurately reflects the range of target motion for regular target motion. However, it generally underestimates the range of target motion when the motion is irregular in amplitude and periodicity. Clinical internal target volume determination using MIP requires caution, especially when there is breathing irregularity.</description><identifier>ISSN: 0360-3016</identifier><identifier>EISSN: 1879-355X</identifier><identifier>DOI: 10.1016/j.ijrobp.2008.10.008</identifier><identifier>PMID: 19147026</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ACCURACY ; ALGORITHMS ; CARCINOMAS ; COMPUTERIZED TOMOGRAPHY ; Four-dimensional computed tomography (4D-CT) ; Hematology, Oncology and Palliative Medicine ; IMAGE PROCESSING ; Lung cancer ; Lung Neoplasms - diagnostic imaging ; Lung Neoplasms - surgery ; LUNGS ; Maximum intensity projection (MIP) ; Movement ; PERIODICITY ; PHANTOMS ; Phantoms, Imaging ; Radiology ; RADIOLOGY AND NUCLEAR MEDICINE ; Radiosurgery ; RADIOTHERAPY ; Radiotherapy Planning, Computer-Assisted - methods ; RESPIRATION ; Stereotactic body radiotherapy ; Tomography, Spiral Computed - methods ; Tumor Burden</subject><ispartof>International journal of radiation oncology, biology, physics, 2009-02, Vol.73 (2), p.618-625</ispartof><rights>Elsevier Inc.</rights><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-1ffa767106fdd6d7d4b996cde3b49fe6ee3e6a2f19c87ba7ae8013a0a09ec53d3</citedby><cites>FETCH-LOGICAL-c443t-1ffa767106fdd6d7d4b996cde3b49fe6ee3e6a2f19c87ba7ae8013a0a09ec53d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360301608035608$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19147026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21172609$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Kwangyoul, Ph.D</creatorcontrib><creatorcontrib>Huang, Long, M.S</creatorcontrib><creatorcontrib>Gagne, Havaleh, M.D</creatorcontrib><creatorcontrib>Papiez, Lech, Ph.D</creatorcontrib><title>Do Maximum Intensity Projection Images Truly Capture Tumor Motion?</title><title>International journal of radiation oncology, biology, physics</title><addtitle>Int J Radiat Oncol Biol Phys</addtitle><description>Purpose For the treatment of patients with lung cancer, internal target volume frequently is determined by using maximum intensity projection (MIP) images generated by means of four-dimensional computed tomography (4D-CT). To check the accuracy of MIPs for various target motions, especially for targets moving irregularly, we performed phantom studies using a programmable dynamic lung phantom. Methods and Materials A custom-built programmable lung phantom was used to simulate irregular target motions along the superior-inferior direction. After scanning in helical mode using 4D-CT, reconstructed phase and MIP images were imported into the Pinnacle 8.0 treatment planning system for image analysis. Results For all regular periodic target motions with constant amplitude and period, the measured MIP target span along the superior-inferior direction was accurate within 2–3 mm of the real target motion span. For irregular target motions with varying amplitudes and periods, the measured MIP target span systematically underrepresented the real range of target motion by more than 1 cm in some cases. The difference between measured MIP target span and real target span decreased as the target moved faster. We associate these discrepancies with the fact that current reconstruction algorithms of commercial 4D-CT are based on phase binning. Conclusions According to our phantom measurements, MIP accurately reflects the range of target motion for regular target motion. However, it generally underestimates the range of target motion when the motion is irregular in amplitude and periodicity. Clinical internal target volume determination using MIP requires caution, especially when there is breathing irregularity.</description><subject>ACCURACY</subject><subject>ALGORITHMS</subject><subject>CARCINOMAS</subject><subject>COMPUTERIZED TOMOGRAPHY</subject><subject>Four-dimensional computed tomography (4D-CT)</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>IMAGE PROCESSING</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Lung Neoplasms - surgery</subject><subject>LUNGS</subject><subject>Maximum intensity projection (MIP)</subject><subject>Movement</subject><subject>PERIODICITY</subject><subject>PHANTOMS</subject><subject>Phantoms, Imaging</subject><subject>Radiology</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radiosurgery</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>RESPIRATION</subject><subject>Stereotactic body radiotherapy</subject><subject>Tomography, Spiral Computed - methods</subject><subject>Tumor Burden</subject><issn>0360-3016</issn><issn>1879-355X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV-L1DAUxYO4uOPqNxApCL51vGnapH1RdPw3sIuCI_gW0uRWU9tkTFrZ-famdEDYl33Jgcvv3px7LiHPKGwpUP6q39o--Pa4LQDqVNomeUA2tBZNzqrqx0OyAcYhZwm-JI9j7AGAUlE-Ipe0oaWAgm_Iu_c-u1G3dpzHbO8mdNFOp-xr8D3qyXqX7Uf1E2N2CPNwynbqOM0Bs8M8-pDd-IV484RcdGqI-PSsV-T7xw-H3ef8-sun_e7tda7Lkk057ToluKDAO2O4EaZsm4Zrg6wtmw45IkOuio42uhatEgproEyBggZ1xQy7Ii_WuT5OVkZtJ9S_tHcuOZVF2qzg0CTq5Uodg_8zY5zkaKPGYVAO_Rwl53UBtagSWK6gDj7GgJ08BjuqcJIU5JKw7OWasFwSXqpJUtvz8_y5HdH8bzpHmoDXK4Api78Ww2IVnUZjw-LUeHvfD3cH6ME6q9XwG08Yez8Hl3KWVMZCgvy2XHk5MtTAqvSyf_J2oyk</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Park, Kwangyoul, Ph.D</creator><creator>Huang, Long, M.S</creator><creator>Gagne, Havaleh, M.D</creator><creator>Papiez, Lech, Ph.D</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20090201</creationdate><title>Do Maximum Intensity Projection Images Truly Capture Tumor Motion?</title><author>Park, Kwangyoul, Ph.D ; Huang, Long, M.S ; Gagne, Havaleh, M.D ; Papiez, Lech, Ph.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-1ffa767106fdd6d7d4b996cde3b49fe6ee3e6a2f19c87ba7ae8013a0a09ec53d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ACCURACY</topic><topic>ALGORITHMS</topic><topic>CARCINOMAS</topic><topic>COMPUTERIZED TOMOGRAPHY</topic><topic>Four-dimensional computed tomography (4D-CT)</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>IMAGE PROCESSING</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Lung Neoplasms - surgery</topic><topic>LUNGS</topic><topic>Maximum intensity projection (MIP)</topic><topic>Movement</topic><topic>PERIODICITY</topic><topic>PHANTOMS</topic><topic>Phantoms, Imaging</topic><topic>Radiology</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radiosurgery</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>RESPIRATION</topic><topic>Stereotactic body radiotherapy</topic><topic>Tomography, Spiral Computed - methods</topic><topic>Tumor Burden</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Kwangyoul, Ph.D</creatorcontrib><creatorcontrib>Huang, Long, M.S</creatorcontrib><creatorcontrib>Gagne, Havaleh, M.D</creatorcontrib><creatorcontrib>Papiez, Lech, Ph.D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>International journal of radiation oncology, biology, physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Kwangyoul, Ph.D</au><au>Huang, Long, M.S</au><au>Gagne, Havaleh, M.D</au><au>Papiez, Lech, Ph.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do Maximum Intensity Projection Images Truly Capture Tumor Motion?</atitle><jtitle>International journal of radiation oncology, biology, physics</jtitle><addtitle>Int J Radiat Oncol Biol Phys</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>73</volume><issue>2</issue><spage>618</spage><epage>625</epage><pages>618-625</pages><issn>0360-3016</issn><eissn>1879-355X</eissn><abstract>Purpose For the treatment of patients with lung cancer, internal target volume frequently is determined by using maximum intensity projection (MIP) images generated by means of four-dimensional computed tomography (4D-CT). To check the accuracy of MIPs for various target motions, especially for targets moving irregularly, we performed phantom studies using a programmable dynamic lung phantom. Methods and Materials A custom-built programmable lung phantom was used to simulate irregular target motions along the superior-inferior direction. After scanning in helical mode using 4D-CT, reconstructed phase and MIP images were imported into the Pinnacle 8.0 treatment planning system for image analysis. Results For all regular periodic target motions with constant amplitude and period, the measured MIP target span along the superior-inferior direction was accurate within 2–3 mm of the real target motion span. For irregular target motions with varying amplitudes and periods, the measured MIP target span systematically underrepresented the real range of target motion by more than 1 cm in some cases. The difference between measured MIP target span and real target span decreased as the target moved faster. We associate these discrepancies with the fact that current reconstruction algorithms of commercial 4D-CT are based on phase binning. Conclusions According to our phantom measurements, MIP accurately reflects the range of target motion for regular target motion. However, it generally underestimates the range of target motion when the motion is irregular in amplitude and periodicity. Clinical internal target volume determination using MIP requires caution, especially when there is breathing irregularity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19147026</pmid><doi>10.1016/j.ijrobp.2008.10.008</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3016
ispartof International journal of radiation oncology, biology, physics, 2009-02, Vol.73 (2), p.618-625
issn 0360-3016
1879-355X
language eng
recordid cdi_osti_scitechconnect_21172609
source MEDLINE; Elsevier ScienceDirect Journals
subjects ACCURACY
ALGORITHMS
CARCINOMAS
COMPUTERIZED TOMOGRAPHY
Four-dimensional computed tomography (4D-CT)
Hematology, Oncology and Palliative Medicine
IMAGE PROCESSING
Lung cancer
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - surgery
LUNGS
Maximum intensity projection (MIP)
Movement
PERIODICITY
PHANTOMS
Phantoms, Imaging
Radiology
RADIOLOGY AND NUCLEAR MEDICINE
Radiosurgery
RADIOTHERAPY
Radiotherapy Planning, Computer-Assisted - methods
RESPIRATION
Stereotactic body radiotherapy
Tomography, Spiral Computed - methods
Tumor Burden
title Do Maximum Intensity Projection Images Truly Capture Tumor Motion?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20Maximum%20Intensity%20Projection%20Images%20Truly%20Capture%20Tumor%20Motion?&rft.jtitle=International%20journal%20of%20radiation%20oncology,%20biology,%20physics&rft.au=Park,%20Kwangyoul,%20Ph.D&rft.date=2009-02-01&rft.volume=73&rft.issue=2&rft.spage=618&rft.epage=625&rft.pages=618-625&rft.issn=0360-3016&rft.eissn=1879-355X&rft_id=info:doi/10.1016/j.ijrobp.2008.10.008&rft_dat=%3Cproquest_osti_%3E66820875%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66820875&rft_id=info:pmid/19147026&rft_els_id=S0360301608035608&rfr_iscdi=true