One-step reduced kinetics for lean hydrogen–air deflagration

A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen–air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2009-05, Vol.156 (5), p.985-996
Hauptverfasser: Fernández-Galisteo, D., Sánchez, A.L., Liñán, A., Williams, F.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 996
container_issue 5
container_start_page 985
container_title Combustion and flame
container_volume 156
creator Fernández-Galisteo, D.
Sánchez, A.L.
Liñán, A.
Williams, F.A.
description A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen–air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flammability limit all reaction intermediaries have small concentrations in the important thin reaction zone that controls the hydrogen–air laminar burning velocity and therefore follow a steady state approximation, while the main species react according to the global irreversible reaction 2H 2 + O 2 → 2H 2O. An explicit expression for the non-Arrhenius rate of this one-step overall reaction for hydrogen oxidation is derived from the seven-step detailed mechanism, for application near the flammability limit. The one-step results are used to calculate flammability limits and burning velocities of planar deflagrations. Furthermore, implications concerning radical profiles in the deflagration and reasons for the success of the approximations are clarified. It is also demonstrated that adding only two irreversible direct recombination steps to the seven-step mechanism accurately reproduces burning velocities of the full detailed mechanism for all equivalence ratios at normal atmospheric conditions and that an eight-step detailed mechanism, constructed from the seven-step mechanism by adding to it the fourth reversible shuffle reaction, improves predictions of O and OH profiles. The new reduced-chemistry descriptions can be useful for both analytical and computational studies of lean hydrogen–air flames, decreasing required computation times.
doi_str_mv 10.1016/j.combustflame.2008.10.009
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21168992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218008003118</els_id><sourcerecordid>34444186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-32b338270b293c6d7de9531c6def3aa3ccfd53b6af876716733729fae29662453</originalsourceid><addsrcrecordid>eNqNkc-KFDEQxoMoOK6-Q6Oopx4rqe50x4Mg659dWNiLnkMmXdnN2JOMSUbY277DvqFPYtpZxJNYlyqoH_Xx1cfYcw5rDly-2a5t3G0OubjZ7GgtAMa6WAOoB2zF-162Qgn-kK0AOLSCj_CYPcl5CwBDh7hi7y4DtbnQvkk0HSxNzTcfqHibGxdTM5MJzfXNlOIVhZ-3d8anZqIqdpVM8TE8ZY-cmTM9u-8n7Ounj19Oz9qLy8_np-8vWtupobQoNoijGGAjFFo5DROpHnmdyKExaK2betxI48ZBDlwOiINQzpBQUoquxxP24ng35uJ1tr6QvbYxBLJFC87lqJSo1OsjtU_x-4Fy0TufLc2zCRQPWStAiVyAquSrf5LY1eKjrODbI2hTzDmR0_vkdybdaA56iUBv9d8R6CWCZQe_VV7eq5hszeySCdbnPxcER5Rj31Xuw5Gj-sIfntLikEJNw6fF4BT9_8j9ApSLov4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34444186</pqid></control><display><type>article</type><title>One-step reduced kinetics for lean hydrogen–air deflagration</title><source>Access via ScienceDirect (Elsevier)</source><creator>Fernández-Galisteo, D. ; Sánchez, A.L. ; Liñán, A. ; Williams, F.A.</creator><creatorcontrib>Fernández-Galisteo, D. ; Sánchez, A.L. ; Liñán, A. ; Williams, F.A.</creatorcontrib><description>A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen–air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flammability limit all reaction intermediaries have small concentrations in the important thin reaction zone that controls the hydrogen–air laminar burning velocity and therefore follow a steady state approximation, while the main species react according to the global irreversible reaction 2H 2 + O 2 → 2H 2O. An explicit expression for the non-Arrhenius rate of this one-step overall reaction for hydrogen oxidation is derived from the seven-step detailed mechanism, for application near the flammability limit. The one-step results are used to calculate flammability limits and burning velocities of planar deflagrations. Furthermore, implications concerning radical profiles in the deflagration and reasons for the success of the approximations are clarified. It is also demonstrated that adding only two irreversible direct recombination steps to the seven-step mechanism accurately reproduces burning velocities of the full detailed mechanism for all equivalence ratios at normal atmospheric conditions and that an eight-step detailed mechanism, constructed from the seven-step mechanism by adding to it the fourth reversible shuffle reaction, improves predictions of O and OH profiles. The new reduced-chemistry descriptions can be useful for both analytical and computational studies of lean hydrogen–air flames, decreasing required computation times.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2008.10.009</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>08 HYDROGEN ; AIR ; AMBIENT TEMPERATURE ; Applied sciences ; APPROXIMATIONS ; ATMOSPHERIC PRESSURE ; COMBUSTION ; COMBUSTION KINETICS ; Combustion of gaseous fuels ; Combustion. Flame ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; FLAME PROPAGATION ; FLAMMABILITY ; Flammability limit ; HYDROGEN ; Laminar flame propagation velocity ; LAMINAR FLAMES ; Lean combustion ; Lean combustion limit ; RADICALS ; REACTION INTERMEDIATES ; RECOMBINATION ; STEADY-STATE CONDITIONS ; Theoretical studies. Data and constants. Metering ; VELOCITY ; WATER</subject><ispartof>Combustion and flame, 2009-05, Vol.156 (5), p.985-996</ispartof><rights>2008 The Combustion Institute</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-32b338270b293c6d7de9531c6def3aa3ccfd53b6af876716733729fae29662453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2008.10.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21336854$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21168992$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernández-Galisteo, D.</creatorcontrib><creatorcontrib>Sánchez, A.L.</creatorcontrib><creatorcontrib>Liñán, A.</creatorcontrib><creatorcontrib>Williams, F.A.</creatorcontrib><title>One-step reduced kinetics for lean hydrogen–air deflagration</title><title>Combustion and flame</title><description>A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen–air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flammability limit all reaction intermediaries have small concentrations in the important thin reaction zone that controls the hydrogen–air laminar burning velocity and therefore follow a steady state approximation, while the main species react according to the global irreversible reaction 2H 2 + O 2 → 2H 2O. An explicit expression for the non-Arrhenius rate of this one-step overall reaction for hydrogen oxidation is derived from the seven-step detailed mechanism, for application near the flammability limit. The one-step results are used to calculate flammability limits and burning velocities of planar deflagrations. Furthermore, implications concerning radical profiles in the deflagration and reasons for the success of the approximations are clarified. It is also demonstrated that adding only two irreversible direct recombination steps to the seven-step mechanism accurately reproduces burning velocities of the full detailed mechanism for all equivalence ratios at normal atmospheric conditions and that an eight-step detailed mechanism, constructed from the seven-step mechanism by adding to it the fourth reversible shuffle reaction, improves predictions of O and OH profiles. The new reduced-chemistry descriptions can be useful for both analytical and computational studies of lean hydrogen–air flames, decreasing required computation times.</description><subject>08 HYDROGEN</subject><subject>AIR</subject><subject>AMBIENT TEMPERATURE</subject><subject>Applied sciences</subject><subject>APPROXIMATIONS</subject><subject>ATMOSPHERIC PRESSURE</subject><subject>COMBUSTION</subject><subject>COMBUSTION KINETICS</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>FLAME PROPAGATION</subject><subject>FLAMMABILITY</subject><subject>Flammability limit</subject><subject>HYDROGEN</subject><subject>Laminar flame propagation velocity</subject><subject>LAMINAR FLAMES</subject><subject>Lean combustion</subject><subject>Lean combustion limit</subject><subject>RADICALS</subject><subject>REACTION INTERMEDIATES</subject><subject>RECOMBINATION</subject><subject>STEADY-STATE CONDITIONS</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>VELOCITY</subject><subject>WATER</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkc-KFDEQxoMoOK6-Q6Oopx4rqe50x4Mg659dWNiLnkMmXdnN2JOMSUbY277DvqFPYtpZxJNYlyqoH_Xx1cfYcw5rDly-2a5t3G0OubjZ7GgtAMa6WAOoB2zF-162Qgn-kK0AOLSCj_CYPcl5CwBDh7hi7y4DtbnQvkk0HSxNzTcfqHibGxdTM5MJzfXNlOIVhZ-3d8anZqIqdpVM8TE8ZY-cmTM9u-8n7Ounj19Oz9qLy8_np-8vWtupobQoNoijGGAjFFo5DROpHnmdyKExaK2betxI48ZBDlwOiINQzpBQUoquxxP24ng35uJ1tr6QvbYxBLJFC87lqJSo1OsjtU_x-4Fy0TufLc2zCRQPWStAiVyAquSrf5LY1eKjrODbI2hTzDmR0_vkdybdaA56iUBv9d8R6CWCZQe_VV7eq5hszeySCdbnPxcER5Rj31Xuw5Gj-sIfntLikEJNw6fF4BT9_8j9ApSLov4</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Fernández-Galisteo, D.</creator><creator>Sánchez, A.L.</creator><creator>Liñán, A.</creator><creator>Williams, F.A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20090501</creationdate><title>One-step reduced kinetics for lean hydrogen–air deflagration</title><author>Fernández-Galisteo, D. ; Sánchez, A.L. ; Liñán, A. ; Williams, F.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-32b338270b293c6d7de9531c6def3aa3ccfd53b6af876716733729fae29662453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>08 HYDROGEN</topic><topic>AIR</topic><topic>AMBIENT TEMPERATURE</topic><topic>Applied sciences</topic><topic>APPROXIMATIONS</topic><topic>ATMOSPHERIC PRESSURE</topic><topic>COMBUSTION</topic><topic>COMBUSTION KINETICS</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>FLAME PROPAGATION</topic><topic>FLAMMABILITY</topic><topic>Flammability limit</topic><topic>HYDROGEN</topic><topic>Laminar flame propagation velocity</topic><topic>LAMINAR FLAMES</topic><topic>Lean combustion</topic><topic>Lean combustion limit</topic><topic>RADICALS</topic><topic>REACTION INTERMEDIATES</topic><topic>RECOMBINATION</topic><topic>STEADY-STATE CONDITIONS</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>VELOCITY</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández-Galisteo, D.</creatorcontrib><creatorcontrib>Sánchez, A.L.</creatorcontrib><creatorcontrib>Liñán, A.</creatorcontrib><creatorcontrib>Williams, F.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández-Galisteo, D.</au><au>Sánchez, A.L.</au><au>Liñán, A.</au><au>Williams, F.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-step reduced kinetics for lean hydrogen–air deflagration</atitle><jtitle>Combustion and flame</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>156</volume><issue>5</issue><spage>985</spage><epage>996</epage><pages>985-996</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen–air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flammability limit all reaction intermediaries have small concentrations in the important thin reaction zone that controls the hydrogen–air laminar burning velocity and therefore follow a steady state approximation, while the main species react according to the global irreversible reaction 2H 2 + O 2 → 2H 2O. An explicit expression for the non-Arrhenius rate of this one-step overall reaction for hydrogen oxidation is derived from the seven-step detailed mechanism, for application near the flammability limit. The one-step results are used to calculate flammability limits and burning velocities of planar deflagrations. Furthermore, implications concerning radical profiles in the deflagration and reasons for the success of the approximations are clarified. It is also demonstrated that adding only two irreversible direct recombination steps to the seven-step mechanism accurately reproduces burning velocities of the full detailed mechanism for all equivalence ratios at normal atmospheric conditions and that an eight-step detailed mechanism, constructed from the seven-step mechanism by adding to it the fourth reversible shuffle reaction, improves predictions of O and OH profiles. The new reduced-chemistry descriptions can be useful for both analytical and computational studies of lean hydrogen–air flames, decreasing required computation times.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2008.10.009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2009-05, Vol.156 (5), p.985-996
issn 0010-2180
1556-2921
language eng
recordid cdi_osti_scitechconnect_21168992
source Access via ScienceDirect (Elsevier)
subjects 08 HYDROGEN
AIR
AMBIENT TEMPERATURE
Applied sciences
APPROXIMATIONS
ATMOSPHERIC PRESSURE
COMBUSTION
COMBUSTION KINETICS
Combustion of gaseous fuels
Combustion. Flame
Energy
Energy. Thermal use of fuels
Exact sciences and technology
FLAME PROPAGATION
FLAMMABILITY
Flammability limit
HYDROGEN
Laminar flame propagation velocity
LAMINAR FLAMES
Lean combustion
Lean combustion limit
RADICALS
REACTION INTERMEDIATES
RECOMBINATION
STEADY-STATE CONDITIONS
Theoretical studies. Data and constants. Metering
VELOCITY
WATER
title One-step reduced kinetics for lean hydrogen–air deflagration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-step%20reduced%20kinetics%20for%20lean%20hydrogen%E2%80%93air%20deflagration&rft.jtitle=Combustion%20and%20flame&rft.au=Fern%C3%A1ndez-Galisteo,%20D.&rft.date=2009-05-01&rft.volume=156&rft.issue=5&rft.spage=985&rft.epage=996&rft.pages=985-996&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/j.combustflame.2008.10.009&rft_dat=%3Cproquest_osti_%3E34444186%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34444186&rft_id=info:pmid/&rft_els_id=S0010218008003118&rfr_iscdi=true