One-step reduced kinetics for lean hydrogen–air deflagration
A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen–air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flam...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2009-05, Vol.156 (5), p.985-996 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 996 |
---|---|
container_issue | 5 |
container_start_page | 985 |
container_title | Combustion and flame |
container_volume | 156 |
creator | Fernández-Galisteo, D. Sánchez, A.L. Liñán, A. Williams, F.A. |
description | A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen–air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flammability limit all reaction intermediaries have small concentrations in the important thin reaction zone that controls the hydrogen–air laminar burning velocity and therefore follow a steady state approximation, while the main species react according to the global irreversible reaction 2H
2 + O
2 → 2H
2O. An explicit expression for the non-Arrhenius rate of this one-step overall reaction for hydrogen oxidation is derived from the seven-step detailed mechanism, for application near the flammability limit. The one-step results are used to calculate flammability limits and burning velocities of planar deflagrations. Furthermore, implications concerning radical profiles in the deflagration and reasons for the success of the approximations are clarified. It is also demonstrated that adding only two irreversible direct recombination steps to the seven-step mechanism accurately reproduces burning velocities of the full detailed mechanism for all equivalence ratios at normal atmospheric conditions and that an eight-step detailed mechanism, constructed from the seven-step mechanism by adding to it the fourth reversible shuffle reaction, improves predictions of O and OH profiles. The new reduced-chemistry descriptions can be useful for both analytical and computational studies of lean hydrogen–air flames, decreasing required computation times. |
doi_str_mv | 10.1016/j.combustflame.2008.10.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21168992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218008003118</els_id><sourcerecordid>34444186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-32b338270b293c6d7de9531c6def3aa3ccfd53b6af876716733729fae29662453</originalsourceid><addsrcrecordid>eNqNkc-KFDEQxoMoOK6-Q6Oopx4rqe50x4Mg659dWNiLnkMmXdnN2JOMSUbY277DvqFPYtpZxJNYlyqoH_Xx1cfYcw5rDly-2a5t3G0OubjZ7GgtAMa6WAOoB2zF-162Qgn-kK0AOLSCj_CYPcl5CwBDh7hi7y4DtbnQvkk0HSxNzTcfqHibGxdTM5MJzfXNlOIVhZ-3d8anZqIqdpVM8TE8ZY-cmTM9u-8n7Ounj19Oz9qLy8_np-8vWtupobQoNoijGGAjFFo5DROpHnmdyKExaK2betxI48ZBDlwOiINQzpBQUoquxxP24ng35uJ1tr6QvbYxBLJFC87lqJSo1OsjtU_x-4Fy0TufLc2zCRQPWStAiVyAquSrf5LY1eKjrODbI2hTzDmR0_vkdybdaA56iUBv9d8R6CWCZQe_VV7eq5hszeySCdbnPxcER5Rj31Xuw5Gj-sIfntLikEJNw6fF4BT9_8j9ApSLov4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34444186</pqid></control><display><type>article</type><title>One-step reduced kinetics for lean hydrogen–air deflagration</title><source>Access via ScienceDirect (Elsevier)</source><creator>Fernández-Galisteo, D. ; Sánchez, A.L. ; Liñán, A. ; Williams, F.A.</creator><creatorcontrib>Fernández-Galisteo, D. ; Sánchez, A.L. ; Liñán, A. ; Williams, F.A.</creatorcontrib><description>A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen–air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flammability limit all reaction intermediaries have small concentrations in the important thin reaction zone that controls the hydrogen–air laminar burning velocity and therefore follow a steady state approximation, while the main species react according to the global irreversible reaction 2H
2 + O
2 → 2H
2O. An explicit expression for the non-Arrhenius rate of this one-step overall reaction for hydrogen oxidation is derived from the seven-step detailed mechanism, for application near the flammability limit. The one-step results are used to calculate flammability limits and burning velocities of planar deflagrations. Furthermore, implications concerning radical profiles in the deflagration and reasons for the success of the approximations are clarified. It is also demonstrated that adding only two irreversible direct recombination steps to the seven-step mechanism accurately reproduces burning velocities of the full detailed mechanism for all equivalence ratios at normal atmospheric conditions and that an eight-step detailed mechanism, constructed from the seven-step mechanism by adding to it the fourth reversible shuffle reaction, improves predictions of O and OH profiles. The new reduced-chemistry descriptions can be useful for both analytical and computational studies of lean hydrogen–air flames, decreasing required computation times.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2008.10.009</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>08 HYDROGEN ; AIR ; AMBIENT TEMPERATURE ; Applied sciences ; APPROXIMATIONS ; ATMOSPHERIC PRESSURE ; COMBUSTION ; COMBUSTION KINETICS ; Combustion of gaseous fuels ; Combustion. Flame ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; FLAME PROPAGATION ; FLAMMABILITY ; Flammability limit ; HYDROGEN ; Laminar flame propagation velocity ; LAMINAR FLAMES ; Lean combustion ; Lean combustion limit ; RADICALS ; REACTION INTERMEDIATES ; RECOMBINATION ; STEADY-STATE CONDITIONS ; Theoretical studies. Data and constants. Metering ; VELOCITY ; WATER</subject><ispartof>Combustion and flame, 2009-05, Vol.156 (5), p.985-996</ispartof><rights>2008 The Combustion Institute</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-32b338270b293c6d7de9531c6def3aa3ccfd53b6af876716733729fae29662453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2008.10.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21336854$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21168992$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernández-Galisteo, D.</creatorcontrib><creatorcontrib>Sánchez, A.L.</creatorcontrib><creatorcontrib>Liñán, A.</creatorcontrib><creatorcontrib>Williams, F.A.</creatorcontrib><title>One-step reduced kinetics for lean hydrogen–air deflagration</title><title>Combustion and flame</title><description>A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen–air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flammability limit all reaction intermediaries have small concentrations in the important thin reaction zone that controls the hydrogen–air laminar burning velocity and therefore follow a steady state approximation, while the main species react according to the global irreversible reaction 2H
2 + O
2 → 2H
2O. An explicit expression for the non-Arrhenius rate of this one-step overall reaction for hydrogen oxidation is derived from the seven-step detailed mechanism, for application near the flammability limit. The one-step results are used to calculate flammability limits and burning velocities of planar deflagrations. Furthermore, implications concerning radical profiles in the deflagration and reasons for the success of the approximations are clarified. It is also demonstrated that adding only two irreversible direct recombination steps to the seven-step mechanism accurately reproduces burning velocities of the full detailed mechanism for all equivalence ratios at normal atmospheric conditions and that an eight-step detailed mechanism, constructed from the seven-step mechanism by adding to it the fourth reversible shuffle reaction, improves predictions of O and OH profiles. The new reduced-chemistry descriptions can be useful for both analytical and computational studies of lean hydrogen–air flames, decreasing required computation times.</description><subject>08 HYDROGEN</subject><subject>AIR</subject><subject>AMBIENT TEMPERATURE</subject><subject>Applied sciences</subject><subject>APPROXIMATIONS</subject><subject>ATMOSPHERIC PRESSURE</subject><subject>COMBUSTION</subject><subject>COMBUSTION KINETICS</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>FLAME PROPAGATION</subject><subject>FLAMMABILITY</subject><subject>Flammability limit</subject><subject>HYDROGEN</subject><subject>Laminar flame propagation velocity</subject><subject>LAMINAR FLAMES</subject><subject>Lean combustion</subject><subject>Lean combustion limit</subject><subject>RADICALS</subject><subject>REACTION INTERMEDIATES</subject><subject>RECOMBINATION</subject><subject>STEADY-STATE CONDITIONS</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>VELOCITY</subject><subject>WATER</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkc-KFDEQxoMoOK6-Q6Oopx4rqe50x4Mg659dWNiLnkMmXdnN2JOMSUbY277DvqFPYtpZxJNYlyqoH_Xx1cfYcw5rDly-2a5t3G0OubjZ7GgtAMa6WAOoB2zF-162Qgn-kK0AOLSCj_CYPcl5CwBDh7hi7y4DtbnQvkk0HSxNzTcfqHibGxdTM5MJzfXNlOIVhZ-3d8anZqIqdpVM8TE8ZY-cmTM9u-8n7Ounj19Oz9qLy8_np-8vWtupobQoNoijGGAjFFo5DROpHnmdyKExaK2betxI48ZBDlwOiINQzpBQUoquxxP24ng35uJ1tr6QvbYxBLJFC87lqJSo1OsjtU_x-4Fy0TufLc2zCRQPWStAiVyAquSrf5LY1eKjrODbI2hTzDmR0_vkdybdaA56iUBv9d8R6CWCZQe_VV7eq5hszeySCdbnPxcER5Rj31Xuw5Gj-sIfntLikEJNw6fF4BT9_8j9ApSLov4</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Fernández-Galisteo, D.</creator><creator>Sánchez, A.L.</creator><creator>Liñán, A.</creator><creator>Williams, F.A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20090501</creationdate><title>One-step reduced kinetics for lean hydrogen–air deflagration</title><author>Fernández-Galisteo, D. ; Sánchez, A.L. ; Liñán, A. ; Williams, F.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-32b338270b293c6d7de9531c6def3aa3ccfd53b6af876716733729fae29662453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>08 HYDROGEN</topic><topic>AIR</topic><topic>AMBIENT TEMPERATURE</topic><topic>Applied sciences</topic><topic>APPROXIMATIONS</topic><topic>ATMOSPHERIC PRESSURE</topic><topic>COMBUSTION</topic><topic>COMBUSTION KINETICS</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>FLAME PROPAGATION</topic><topic>FLAMMABILITY</topic><topic>Flammability limit</topic><topic>HYDROGEN</topic><topic>Laminar flame propagation velocity</topic><topic>LAMINAR FLAMES</topic><topic>Lean combustion</topic><topic>Lean combustion limit</topic><topic>RADICALS</topic><topic>REACTION INTERMEDIATES</topic><topic>RECOMBINATION</topic><topic>STEADY-STATE CONDITIONS</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>VELOCITY</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández-Galisteo, D.</creatorcontrib><creatorcontrib>Sánchez, A.L.</creatorcontrib><creatorcontrib>Liñán, A.</creatorcontrib><creatorcontrib>Williams, F.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández-Galisteo, D.</au><au>Sánchez, A.L.</au><au>Liñán, A.</au><au>Williams, F.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-step reduced kinetics for lean hydrogen–air deflagration</atitle><jtitle>Combustion and flame</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>156</volume><issue>5</issue><spage>985</spage><epage>996</epage><pages>985-996</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen–air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flammability limit all reaction intermediaries have small concentrations in the important thin reaction zone that controls the hydrogen–air laminar burning velocity and therefore follow a steady state approximation, while the main species react according to the global irreversible reaction 2H
2 + O
2 → 2H
2O. An explicit expression for the non-Arrhenius rate of this one-step overall reaction for hydrogen oxidation is derived from the seven-step detailed mechanism, for application near the flammability limit. The one-step results are used to calculate flammability limits and burning velocities of planar deflagrations. Furthermore, implications concerning radical profiles in the deflagration and reasons for the success of the approximations are clarified. It is also demonstrated that adding only two irreversible direct recombination steps to the seven-step mechanism accurately reproduces burning velocities of the full detailed mechanism for all equivalence ratios at normal atmospheric conditions and that an eight-step detailed mechanism, constructed from the seven-step mechanism by adding to it the fourth reversible shuffle reaction, improves predictions of O and OH profiles. The new reduced-chemistry descriptions can be useful for both analytical and computational studies of lean hydrogen–air flames, decreasing required computation times.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2008.10.009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2009-05, Vol.156 (5), p.985-996 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_osti_scitechconnect_21168992 |
source | Access via ScienceDirect (Elsevier) |
subjects | 08 HYDROGEN AIR AMBIENT TEMPERATURE Applied sciences APPROXIMATIONS ATMOSPHERIC PRESSURE COMBUSTION COMBUSTION KINETICS Combustion of gaseous fuels Combustion. Flame Energy Energy. Thermal use of fuels Exact sciences and technology FLAME PROPAGATION FLAMMABILITY Flammability limit HYDROGEN Laminar flame propagation velocity LAMINAR FLAMES Lean combustion Lean combustion limit RADICALS REACTION INTERMEDIATES RECOMBINATION STEADY-STATE CONDITIONS Theoretical studies. Data and constants. Metering VELOCITY WATER |
title | One-step reduced kinetics for lean hydrogen–air deflagration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-step%20reduced%20kinetics%20for%20lean%20hydrogen%E2%80%93air%20deflagration&rft.jtitle=Combustion%20and%20flame&rft.au=Fern%C3%A1ndez-Galisteo,%20D.&rft.date=2009-05-01&rft.volume=156&rft.issue=5&rft.spage=985&rft.epage=996&rft.pages=985-996&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/j.combustflame.2008.10.009&rft_dat=%3Cproquest_osti_%3E34444186%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34444186&rft_id=info:pmid/&rft_els_id=S0010218008003118&rfr_iscdi=true |