Inner structure of Spin{sup c}(4) gauge potential on 4-dimensional manifolds

The decomposition of Spin{sup c}(4) gauge potential in terms of the Dirac 4-spinor is investigated, where an important characterizing equation {delta}A{sub {mu}}=-{lambda}A{sub {mu}} has been discovered. Here, {lambda} is the vacuum expectation value of the spinor field, {lambda}=-parallel {phi}-par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2008-09, Vol.323 (9)
Hauptverfasser: Liu Xin, Duan Yishi, Yang Wenli, Institute of Modern Physics, Northwest University, Xian 710069, Zhang Yaozhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Annals of physics
container_volume 323
creator Liu Xin
Duan Yishi
Yang Wenli
Institute of Modern Physics, Northwest University, Xian 710069
Zhang Yaozhong
description The decomposition of Spin{sup c}(4) gauge potential in terms of the Dirac 4-spinor is investigated, where an important characterizing equation {delta}A{sub {mu}}=-{lambda}A{sub {mu}} has been discovered. Here, {lambda} is the vacuum expectation value of the spinor field, {lambda}=-parallel {phi}-parallel {sup 2}, and A{sub {mu}} the twisting U(1) potential. It is found that when {lambda} takes constant values, the characterizing equation becomes an eigenvalue problem of the Laplacian operator. It provides a revenue to determine the modulus of the spinor field by using the Laplacian spectral theory. The above study could be useful in determining the spinor field and twisting potential in the Seiberg-Witten equations. Moreover, topological characteristic numbers of instantons in the self-dual sub-space are also discussed.
doi_str_mv 10.1016/j.aop.2008.06.002
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_21163730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21163730</sourcerecordid><originalsourceid>FETCH-LOGICAL-o183t-e70aa3202d662729ebd4dd6633488be26ff0731554871cf95d6247a6906c1de63</originalsourceid><addsrcrecordid>eNotj81KxDAURoMoWEcfwF3AjS5a703SNF3K4M9AwYUK7oZMko4ZOklp0pX47hZ09R3O4sBHyDVChYDy_lDpOFYMQFUgKwB2QgqEVpbA689TUgAAL0WL8pxcpHQAQBS1Kki3CcFNNOVpNnmeHI09fRt9-E7zSM3Prbijez3vHR1jdiF7PdAYqCitP7qQfAyLOOrg-zjYdEnOej0kd_W_K_Lx9Pi-fim71-fN-qErIyqeS9eA1pwBs1KyhrVuZ4VdmHOh1M4x2ffQcKxroRo0fVtbyUSjZQvSoHWSr8jNXzem7LfJ-OzMl4nLE5O3DFHyhgP_BbUaT6M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inner structure of Spin{sup c}(4) gauge potential on 4-dimensional manifolds</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liu Xin ; Duan Yishi ; Yang Wenli ; Institute of Modern Physics, Northwest University, Xian 710069 ; Zhang Yaozhong</creator><creatorcontrib>Liu Xin ; Duan Yishi ; Yang Wenli ; Institute of Modern Physics, Northwest University, Xian 710069 ; Zhang Yaozhong</creatorcontrib><description>The decomposition of Spin{sup c}(4) gauge potential in terms of the Dirac 4-spinor is investigated, where an important characterizing equation {delta}A{sub {mu}}=-{lambda}A{sub {mu}} has been discovered. Here, {lambda} is the vacuum expectation value of the spinor field, {lambda}=-parallel {phi}-parallel {sup 2}, and A{sub {mu}} the twisting U(1) potential. It is found that when {lambda} takes constant values, the characterizing equation becomes an eigenvalue problem of the Laplacian operator. It provides a revenue to determine the modulus of the spinor field by using the Laplacian spectral theory. The above study could be useful in determining the spinor field and twisting potential in the Seiberg-Witten equations. Moreover, topological characteristic numbers of instantons in the self-dual sub-space are also discussed.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2008.06.002</identifier><language>eng</language><publisher>United States</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; EIGENVALUES ; EQUATIONS ; EXPECTATION VALUE ; FOUR-DIMENSIONAL CALCULATIONS ; GAUGE INVARIANCE ; INSTANTONS ; LAPLACIAN ; MATHEMATICAL MANIFOLDS ; POTENTIALS ; SPIN ; SPINOR FIELDS ; TOPOLOGY ; U-1 GROUPS</subject><ispartof>Annals of physics, 2008-09, Vol.323 (9)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21163730$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu Xin</creatorcontrib><creatorcontrib>Duan Yishi</creatorcontrib><creatorcontrib>Yang Wenli</creatorcontrib><creatorcontrib>Institute of Modern Physics, Northwest University, Xian 710069</creatorcontrib><creatorcontrib>Zhang Yaozhong</creatorcontrib><title>Inner structure of Spin{sup c}(4) gauge potential on 4-dimensional manifolds</title><title>Annals of physics</title><description>The decomposition of Spin{sup c}(4) gauge potential in terms of the Dirac 4-spinor is investigated, where an important characterizing equation {delta}A{sub {mu}}=-{lambda}A{sub {mu}} has been discovered. Here, {lambda} is the vacuum expectation value of the spinor field, {lambda}=-parallel {phi}-parallel {sup 2}, and A{sub {mu}} the twisting U(1) potential. It is found that when {lambda} takes constant values, the characterizing equation becomes an eigenvalue problem of the Laplacian operator. It provides a revenue to determine the modulus of the spinor field by using the Laplacian spectral theory. The above study could be useful in determining the spinor field and twisting potential in the Seiberg-Witten equations. Moreover, topological characteristic numbers of instantons in the self-dual sub-space are also discussed.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>EIGENVALUES</subject><subject>EQUATIONS</subject><subject>EXPECTATION VALUE</subject><subject>FOUR-DIMENSIONAL CALCULATIONS</subject><subject>GAUGE INVARIANCE</subject><subject>INSTANTONS</subject><subject>LAPLACIAN</subject><subject>MATHEMATICAL MANIFOLDS</subject><subject>POTENTIALS</subject><subject>SPIN</subject><subject>SPINOR FIELDS</subject><subject>TOPOLOGY</subject><subject>U-1 GROUPS</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNotj81KxDAURoMoWEcfwF3AjS5a703SNF3K4M9AwYUK7oZMko4ZOklp0pX47hZ09R3O4sBHyDVChYDy_lDpOFYMQFUgKwB2QgqEVpbA689TUgAAL0WL8pxcpHQAQBS1Kki3CcFNNOVpNnmeHI09fRt9-E7zSM3Prbijez3vHR1jdiF7PdAYqCitP7qQfAyLOOrg-zjYdEnOej0kd_W_K_Lx9Pi-fim71-fN-qErIyqeS9eA1pwBs1KyhrVuZ4VdmHOh1M4x2ffQcKxroRo0fVtbyUSjZQvSoHWSr8jNXzem7LfJ-OzMl4nLE5O3DFHyhgP_BbUaT6M</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Liu Xin</creator><creator>Duan Yishi</creator><creator>Yang Wenli</creator><creator>Institute of Modern Physics, Northwest University, Xian 710069</creator><creator>Zhang Yaozhong</creator><scope>OTOTI</scope></search><sort><creationdate>20080901</creationdate><title>Inner structure of Spin{sup c}(4) gauge potential on 4-dimensional manifolds</title><author>Liu Xin ; Duan Yishi ; Yang Wenli ; Institute of Modern Physics, Northwest University, Xian 710069 ; Zhang Yaozhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o183t-e70aa3202d662729ebd4dd6633488be26ff0731554871cf95d6247a6906c1de63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>EIGENVALUES</topic><topic>EQUATIONS</topic><topic>EXPECTATION VALUE</topic><topic>FOUR-DIMENSIONAL CALCULATIONS</topic><topic>GAUGE INVARIANCE</topic><topic>INSTANTONS</topic><topic>LAPLACIAN</topic><topic>MATHEMATICAL MANIFOLDS</topic><topic>POTENTIALS</topic><topic>SPIN</topic><topic>SPINOR FIELDS</topic><topic>TOPOLOGY</topic><topic>U-1 GROUPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu Xin</creatorcontrib><creatorcontrib>Duan Yishi</creatorcontrib><creatorcontrib>Yang Wenli</creatorcontrib><creatorcontrib>Institute of Modern Physics, Northwest University, Xian 710069</creatorcontrib><creatorcontrib>Zhang Yaozhong</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu Xin</au><au>Duan Yishi</au><au>Yang Wenli</au><au>Institute of Modern Physics, Northwest University, Xian 710069</au><au>Zhang Yaozhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inner structure of Spin{sup c}(4) gauge potential on 4-dimensional manifolds</atitle><jtitle>Annals of physics</jtitle><date>2008-09-01</date><risdate>2008</risdate><volume>323</volume><issue>9</issue><issn>0003-4916</issn><eissn>1096-035X</eissn><abstract>The decomposition of Spin{sup c}(4) gauge potential in terms of the Dirac 4-spinor is investigated, where an important characterizing equation {delta}A{sub {mu}}=-{lambda}A{sub {mu}} has been discovered. Here, {lambda} is the vacuum expectation value of the spinor field, {lambda}=-parallel {phi}-parallel {sup 2}, and A{sub {mu}} the twisting U(1) potential. It is found that when {lambda} takes constant values, the characterizing equation becomes an eigenvalue problem of the Laplacian operator. It provides a revenue to determine the modulus of the spinor field by using the Laplacian spectral theory. The above study could be useful in determining the spinor field and twisting potential in the Seiberg-Witten equations. Moreover, topological characteristic numbers of instantons in the self-dual sub-space are also discussed.</abstract><cop>United States</cop><doi>10.1016/j.aop.2008.06.002</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2008-09, Vol.323 (9)
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_21163730
source Access via ScienceDirect (Elsevier)
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
EIGENVALUES
EQUATIONS
EXPECTATION VALUE
FOUR-DIMENSIONAL CALCULATIONS
GAUGE INVARIANCE
INSTANTONS
LAPLACIAN
MATHEMATICAL MANIFOLDS
POTENTIALS
SPIN
SPINOR FIELDS
TOPOLOGY
U-1 GROUPS
title Inner structure of Spin{sup c}(4) gauge potential on 4-dimensional manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inner%20structure%20of%20Spin%7Bsup%20c%7D(4)%20gauge%20potential%20on%204-dimensional%20manifolds&rft.jtitle=Annals%20of%20physics&rft.au=Liu%20Xin&rft.date=2008-09-01&rft.volume=323&rft.issue=9&rft.issn=0003-4916&rft.eissn=1096-035X&rft_id=info:doi/10.1016/j.aop.2008.06.002&rft_dat=%3Costi%3E21163730%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true