Modelling of Multiphase Flow in Ironmaking Blast Furnace
A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2009-01, Vol.48 (1), p.214-226 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 226 |
---|---|
container_issue | 1 |
container_start_page | 214 |
container_title | Industrial & engineering chemistry research |
container_volume | 48 |
creator | Dong, X. F Yu, A. B Burgess, J. M Pinson, D Chew, S Zulli, P |
description | A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations. |
doi_str_mv | 10.1021/ie800147v |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21149578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e43071508</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-812ee2cdb8ac8343de1388a71e6bd439d576d3cfc810ad6b9a252adc74dce6833</originalsourceid><addsrcrecordid>eNpt0D9PAkEQBfCN0UREC7_BJcbC4nT_3g2lElASiI3Wl2F2TxaXW3J7aPz2ghAqq2l-85L3GLsW_F5wKR68A86FLr9OWE8YyXPDtTllPQ4AuQEw5-wipSXn3Bitewxm0boQfPORxTqbbULn1wtMLhuH-J35Jpu0sVnh5w48BUxdNt60DZK7ZGc1huSuDrfP3sejt-FLPn19ngwfpzkqUXY5COmcJDsHJFBaWScUAJbCFXOr1cCasrCKagLB0RbzAUoj0VKpLbkClOqzm31uTJ2vEvnO0YJi0zjqKimEHpgStupur6iNKbWurtatX2H7Uwle7YapjsNs7e3erjERhrrFhnw6PkjBBS_-Mg8OKVXLuKsd0j95v0Lrba4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modelling of Multiphase Flow in Ironmaking Blast Furnace</title><source>ACS Publications</source><creator>Dong, X. F ; Yu, A. B ; Burgess, J. M ; Pinson, D ; Chew, S ; Zulli, P</creator><creatorcontrib>Dong, X. F ; Yu, A. B ; Burgess, J. M ; Pinson, D ; Chew, S ; Zulli, P</creatorcontrib><description>A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie800147v</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>01 COAL, LIGNITE, AND PEAT ; Applied sciences ; BLAST FURNACES ; Chemical engineering ; COKE ; Exact sciences and technology ; FLOW MODELS ; FLUID FLOW ; General Research ; Hydrodynamics of contact apparatus ; IRON ORES ; MATHEMATICAL MODELS ; PARTICLE SIZE ; PARTICLES ; PERMEABILITY ; SIMULATION</subject><ispartof>Industrial & engineering chemistry research, 2009-01, Vol.48 (1), p.214-226</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-812ee2cdb8ac8343de1388a71e6bd439d576d3cfc810ad6b9a252adc74dce6833</citedby><cites>FETCH-LOGICAL-a317t-812ee2cdb8ac8343de1388a71e6bd439d576d3cfc810ad6b9a252adc74dce6833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie800147v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie800147v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21010678$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21149578$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, X. F</creatorcontrib><creatorcontrib>Yu, A. B</creatorcontrib><creatorcontrib>Burgess, J. M</creatorcontrib><creatorcontrib>Pinson, D</creatorcontrib><creatorcontrib>Chew, S</creatorcontrib><creatorcontrib>Zulli, P</creatorcontrib><title>Modelling of Multiphase Flow in Ironmaking Blast Furnace</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.</description><subject>01 COAL, LIGNITE, AND PEAT</subject><subject>Applied sciences</subject><subject>BLAST FURNACES</subject><subject>Chemical engineering</subject><subject>COKE</subject><subject>Exact sciences and technology</subject><subject>FLOW MODELS</subject><subject>FLUID FLOW</subject><subject>General Research</subject><subject>Hydrodynamics of contact apparatus</subject><subject>IRON ORES</subject><subject>MATHEMATICAL MODELS</subject><subject>PARTICLE SIZE</subject><subject>PARTICLES</subject><subject>PERMEABILITY</subject><subject>SIMULATION</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpt0D9PAkEQBfCN0UREC7_BJcbC4nT_3g2lElASiI3Wl2F2TxaXW3J7aPz2ghAqq2l-85L3GLsW_F5wKR68A86FLr9OWE8YyXPDtTllPQ4AuQEw5-wipSXn3Bitewxm0boQfPORxTqbbULn1wtMLhuH-J35Jpu0sVnh5w48BUxdNt60DZK7ZGc1huSuDrfP3sejt-FLPn19ngwfpzkqUXY5COmcJDsHJFBaWScUAJbCFXOr1cCasrCKagLB0RbzAUoj0VKpLbkClOqzm31uTJ2vEvnO0YJi0zjqKimEHpgStupur6iNKbWurtatX2H7Uwle7YapjsNs7e3erjERhrrFhnw6PkjBBS_-Mg8OKVXLuKsd0j95v0Lrba4</recordid><startdate>20090107</startdate><enddate>20090107</enddate><creator>Dong, X. F</creator><creator>Yu, A. B</creator><creator>Burgess, J. M</creator><creator>Pinson, D</creator><creator>Chew, S</creator><creator>Zulli, P</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20090107</creationdate><title>Modelling of Multiphase Flow in Ironmaking Blast Furnace</title><author>Dong, X. F ; Yu, A. B ; Burgess, J. M ; Pinson, D ; Chew, S ; Zulli, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-812ee2cdb8ac8343de1388a71e6bd439d576d3cfc810ad6b9a252adc74dce6833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>01 COAL, LIGNITE, AND PEAT</topic><topic>Applied sciences</topic><topic>BLAST FURNACES</topic><topic>Chemical engineering</topic><topic>COKE</topic><topic>Exact sciences and technology</topic><topic>FLOW MODELS</topic><topic>FLUID FLOW</topic><topic>General Research</topic><topic>Hydrodynamics of contact apparatus</topic><topic>IRON ORES</topic><topic>MATHEMATICAL MODELS</topic><topic>PARTICLE SIZE</topic><topic>PARTICLES</topic><topic>PERMEABILITY</topic><topic>SIMULATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, X. F</creatorcontrib><creatorcontrib>Yu, A. B</creatorcontrib><creatorcontrib>Burgess, J. M</creatorcontrib><creatorcontrib>Pinson, D</creatorcontrib><creatorcontrib>Chew, S</creatorcontrib><creatorcontrib>Zulli, P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, X. F</au><au>Yu, A. B</au><au>Burgess, J. M</au><au>Pinson, D</au><au>Chew, S</au><au>Zulli, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of Multiphase Flow in Ironmaking Blast Furnace</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2009-01-07</date><risdate>2009</risdate><volume>48</volume><issue>1</issue><spage>214</spage><epage>226</epage><pages>214-226</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie800147v</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2009-01, Vol.48 (1), p.214-226 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_osti_scitechconnect_21149578 |
source | ACS Publications |
subjects | 01 COAL, LIGNITE, AND PEAT Applied sciences BLAST FURNACES Chemical engineering COKE Exact sciences and technology FLOW MODELS FLUID FLOW General Research Hydrodynamics of contact apparatus IRON ORES MATHEMATICAL MODELS PARTICLE SIZE PARTICLES PERMEABILITY SIMULATION |
title | Modelling of Multiphase Flow in Ironmaking Blast Furnace |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20Multiphase%20Flow%20in%20Ironmaking%20Blast%20Furnace&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Dong,%20X.%20F&rft.date=2009-01-07&rft.volume=48&rft.issue=1&rft.spage=214&rft.epage=226&rft.pages=214-226&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie800147v&rft_dat=%3Cacs_osti_%3Ee43071508%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |