Critical temperature and energy gap for the BCS equation

We derive upper and lower bounds on the critical temperature T{sub c} and the energy gap {xi} (at zero temperature) for the BCS gap equation, describing spin-(1/2) fermions interacting via a local two-body interaction potential {lambda}V(x). At weak coupling {lambda}

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2008-05, Vol.77 (18), Article 184517
Hauptverfasser: Hainzl, Christian, Seiringer, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 77
creator Hainzl, Christian
Seiringer, Robert
description We derive upper and lower bounds on the critical temperature T{sub c} and the energy gap {xi} (at zero temperature) for the BCS gap equation, describing spin-(1/2) fermions interacting via a local two-body interaction potential {lambda}V(x). At weak coupling {lambda}
doi_str_mv 10.1103/PhysRevB.77.184517
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21143542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevB_77_184517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-2be5125315a7ed72b0b17b74a17b92a0669bea8cd77404f815cdff23561429453</originalsourceid><addsrcrecordid>eNo1kE1LxDAYhIMouK7-AU8Bz13z5qNpj27xCxYUP8BbSNO328puW5Os0H9vpXqZmcMwDA8hl8BWAExcPzdjeMHv9UrrFWRSgT4iC1CKJVyoj-MpszxLGHA4JWchfDIGMpd8QbLCt7F1dkcj7gf0Nh48UttVFDv025Fu7UDr3tPYIF0XrxS_Dja2fXdOTmq7C3jx50vyfnf7Vjwkm6f7x-JmkzgpZEx4iQq4EqCsxkrzkpWgSy3tpDm3LE3zEm3mKq0lk3UGylV1PZ1OQfJcKrEkV_NuH2Jrgmsjusb1XYcuGg4ghZJ8avG55XwfgsfaDL7dWz8aYOaXkPknZLQ2MyHxA3JuWY8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Critical temperature and energy gap for the BCS equation</title><source>American Physical Society Journals</source><creator>Hainzl, Christian ; Seiringer, Robert</creator><creatorcontrib>Hainzl, Christian ; Seiringer, Robert</creatorcontrib><description>We derive upper and lower bounds on the critical temperature T{sub c} and the energy gap {xi} (at zero temperature) for the BCS gap equation, describing spin-(1/2) fermions interacting via a local two-body interaction potential {lambda}V(x). At weak coupling {lambda}&lt;&lt;1 and under appropriate assumptions on V(x), our bounds show that T{sub c}{approx}A exp(-B/{lambda}) and {xi}{approx}C exp(-B/{lambda}) for some explicit coefficients A, B, and C depending on the interaction V(x) and the chemical potential {mu}. The ratio A/C turns out to be a universal constant, independent of both V(x) and {mu}. Our analysis is valid for any {mu}; for small {mu}, or low density, our formulas reduce to well-known expressions involving the scattering length of V(x)</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.77.184517</identifier><language>eng</language><publisher>United States</publisher><subject>BCS THEORY ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; COUPLING ; CRITICAL TEMPERATURE ; ENERGY GAP ; EQUATIONS ; FERMIONS ; INTERACTIONS ; POTENTIALS ; SCATTERING LENGTHS ; SPIN ; TEMPERATURE ZERO K ; TWO-BODY PROBLEM</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2008-05, Vol.77 (18), Article 184517</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-2be5125315a7ed72b0b17b74a17b92a0669bea8cd77404f815cdff23561429453</citedby><cites>FETCH-LOGICAL-c434t-2be5125315a7ed72b0b17b74a17b92a0669bea8cd77404f815cdff23561429453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21143542$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hainzl, Christian</creatorcontrib><creatorcontrib>Seiringer, Robert</creatorcontrib><title>Critical temperature and energy gap for the BCS equation</title><title>Physical review. B, Condensed matter and materials physics</title><description>We derive upper and lower bounds on the critical temperature T{sub c} and the energy gap {xi} (at zero temperature) for the BCS gap equation, describing spin-(1/2) fermions interacting via a local two-body interaction potential {lambda}V(x). At weak coupling {lambda}&lt;&lt;1 and under appropriate assumptions on V(x), our bounds show that T{sub c}{approx}A exp(-B/{lambda}) and {xi}{approx}C exp(-B/{lambda}) for some explicit coefficients A, B, and C depending on the interaction V(x) and the chemical potential {mu}. The ratio A/C turns out to be a universal constant, independent of both V(x) and {mu}. Our analysis is valid for any {mu}; for small {mu}, or low density, our formulas reduce to well-known expressions involving the scattering length of V(x)</description><subject>BCS THEORY</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>COUPLING</subject><subject>CRITICAL TEMPERATURE</subject><subject>ENERGY GAP</subject><subject>EQUATIONS</subject><subject>FERMIONS</subject><subject>INTERACTIONS</subject><subject>POTENTIALS</subject><subject>SCATTERING LENGTHS</subject><subject>SPIN</subject><subject>TEMPERATURE ZERO K</subject><subject>TWO-BODY PROBLEM</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LxDAYhIMouK7-AU8Bz13z5qNpj27xCxYUP8BbSNO328puW5Os0H9vpXqZmcMwDA8hl8BWAExcPzdjeMHv9UrrFWRSgT4iC1CKJVyoj-MpszxLGHA4JWchfDIGMpd8QbLCt7F1dkcj7gf0Nh48UttVFDv025Fu7UDr3tPYIF0XrxS_Dja2fXdOTmq7C3jx50vyfnf7Vjwkm6f7x-JmkzgpZEx4iQq4EqCsxkrzkpWgSy3tpDm3LE3zEm3mKq0lk3UGylV1PZ1OQfJcKrEkV_NuH2Jrgmsjusb1XYcuGg4ghZJ8avG55XwfgsfaDL7dWz8aYOaXkPknZLQ2MyHxA3JuWY8</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Hainzl, Christian</creator><creator>Seiringer, Robert</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20080501</creationdate><title>Critical temperature and energy gap for the BCS equation</title><author>Hainzl, Christian ; Seiringer, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-2be5125315a7ed72b0b17b74a17b92a0669bea8cd77404f815cdff23561429453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>BCS THEORY</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>COUPLING</topic><topic>CRITICAL TEMPERATURE</topic><topic>ENERGY GAP</topic><topic>EQUATIONS</topic><topic>FERMIONS</topic><topic>INTERACTIONS</topic><topic>POTENTIALS</topic><topic>SCATTERING LENGTHS</topic><topic>SPIN</topic><topic>TEMPERATURE ZERO K</topic><topic>TWO-BODY PROBLEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hainzl, Christian</creatorcontrib><creatorcontrib>Seiringer, Robert</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hainzl, Christian</au><au>Seiringer, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical temperature and energy gap for the BCS equation</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2008-05-01</date><risdate>2008</risdate><volume>77</volume><issue>18</issue><artnum>184517</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We derive upper and lower bounds on the critical temperature T{sub c} and the energy gap {xi} (at zero temperature) for the BCS gap equation, describing spin-(1/2) fermions interacting via a local two-body interaction potential {lambda}V(x). At weak coupling {lambda}&lt;&lt;1 and under appropriate assumptions on V(x), our bounds show that T{sub c}{approx}A exp(-B/{lambda}) and {xi}{approx}C exp(-B/{lambda}) for some explicit coefficients A, B, and C depending on the interaction V(x) and the chemical potential {mu}. The ratio A/C turns out to be a universal constant, independent of both V(x) and {mu}. Our analysis is valid for any {mu}; for small {mu}, or low density, our formulas reduce to well-known expressions involving the scattering length of V(x)</abstract><cop>United States</cop><doi>10.1103/PhysRevB.77.184517</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2008-05, Vol.77 (18), Article 184517
issn 1098-0121
1550-235X
language eng
recordid cdi_osti_scitechconnect_21143542
source American Physical Society Journals
subjects BCS THEORY
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
COUPLING
CRITICAL TEMPERATURE
ENERGY GAP
EQUATIONS
FERMIONS
INTERACTIONS
POTENTIALS
SCATTERING LENGTHS
SPIN
TEMPERATURE ZERO K
TWO-BODY PROBLEM
title Critical temperature and energy gap for the BCS equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20temperature%20and%20energy%20gap%20for%20the%20BCS%20equation&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Hainzl,%20Christian&rft.date=2008-05-01&rft.volume=77&rft.issue=18&rft.artnum=184517&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.77.184517&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevB_77_184517%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true