Microstructure and deformation mode of a stainless steel rupture disc exposed to sodium–water reaction

This paper deals with microstructural studies carried out on an austenitic stainless steel rupture disc which was exposed to sodium–water reaction. The rupture disc was part of a leak simulator put in a micro leak test section which was used to study the ‘self wastage’ of steam generator tubes. Duri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials characterization 2008-08, Vol.59 (8), p.1088-1095
Hauptverfasser: Sudha, C., Parameswaran, P., Kishore, S., Murthy, C. Meikanda, Rajan, M., Vijayalakshmi, M., Raghunathan, V.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1095
container_issue 8
container_start_page 1088
container_title Materials characterization
container_volume 59
creator Sudha, C.
Parameswaran, P.
Kishore, S.
Murthy, C. Meikanda
Rajan, M.
Vijayalakshmi, M.
Raghunathan, V.S.
description This paper deals with microstructural studies carried out on an austenitic stainless steel rupture disc which was exposed to sodium–water reaction. The rupture disc was part of a leak simulator put in a micro leak test section which was used to study the ‘self wastage’ of steam generator tubes. During micro leak testing, the rupture disc failed exhibiting a linear crack at a much lower pressure of 10 MPa rather than bursting open at the higher designed pressure of 15 MPa. The failed rupture disc revealed different microstructural features on the inner (steam exposed) and outer (sodium exposed) surfaces. Using microstructure as the signature, the temperature experienced by the rupture disc was predicted as ≥ 1273 K. Evidence for the exposure of the rupture disc to highly exothermic sodium–water reaction was obtained in the form of sodium rich debris, microcracks and deformation bands. Detailed transmission electron microscopy revealed the nature of deformation bands as deformation twins which is not a preferred failure mode for austenitic stainless steels.
doi_str_mv 10.1016/j.matchar.2007.08.030
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21140760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044580307003208</els_id><sourcerecordid>S1044580307003208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-64a656adc07aee6a0b0a943ac691dedd01549947464a1caf87d7b13d750dbd1a3</originalsourceid><addsrcrecordid>eNqFkMtKBDEQRRtR8PkJQkBcdluZTifdKxHxBYobXYeapJrJMNMZkoyPnf_gH_olph1x66pqce6turcojjlUHLg8m1dLTGaGoZoAqAraCmrYKvZ4q-pS8LbbzjsIUTYt1LvFfoxzAJAtV3vF7MGZ4GMKa5PWgRgOllnqfciWzg9s6S0x3zNkMaEbFhRj3ogWLKxXPwrromH0tvKRLEueRW_devn18fmKiQILhGZ0Oix2elxEOvqdB8Xz9dXT5W15_3hzd3lxX5paqlRKgbKRaA0oJJIIU8BO1Ghkxy1ZC7wRXSeUyCA32LfKqimvrWrATi3H-qA42fjmUE5H4xKZmfHDQCbpCecClIRMNRtqDB8D9XoV3BLDu-agx1L1XP-WqsdSNbQ6l5p1pxvdCqPBRR9wMC7-iScgapBKZO58w1GO-uIojJ_QYMi6MD5ivfvn0jcW2pL8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microstructure and deformation mode of a stainless steel rupture disc exposed to sodium–water reaction</title><source>Elsevier ScienceDirect Journals</source><creator>Sudha, C. ; Parameswaran, P. ; Kishore, S. ; Murthy, C. Meikanda ; Rajan, M. ; Vijayalakshmi, M. ; Raghunathan, V.S.</creator><creatorcontrib>Sudha, C. ; Parameswaran, P. ; Kishore, S. ; Murthy, C. Meikanda ; Rajan, M. ; Vijayalakshmi, M. ; Raghunathan, V.S.</creatorcontrib><description>This paper deals with microstructural studies carried out on an austenitic stainless steel rupture disc which was exposed to sodium–water reaction. The rupture disc was part of a leak simulator put in a micro leak test section which was used to study the ‘self wastage’ of steam generator tubes. During micro leak testing, the rupture disc failed exhibiting a linear crack at a much lower pressure of 10 MPa rather than bursting open at the higher designed pressure of 15 MPa. The failed rupture disc revealed different microstructural features on the inner (steam exposed) and outer (sodium exposed) surfaces. Using microstructure as the signature, the temperature experienced by the rupture disc was predicted as ≥ 1273 K. Evidence for the exposure of the rupture disc to highly exothermic sodium–water reaction was obtained in the form of sodium rich debris, microcracks and deformation bands. Detailed transmission electron microscopy revealed the nature of deformation bands as deformation twins which is not a preferred failure mode for austenitic stainless steels.</description><identifier>ISSN: 1044-5803</identifier><identifier>EISSN: 1873-4189</identifier><identifier>DOI: 10.1016/j.matchar.2007.08.030</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Austenitic stainless steel ; AUSTENITIC STEELS ; CRACKS ; Cross-disciplinary physics: materials science; rheology ; DEFORMATION ; Exact sciences and technology ; Fractures ; LEAK TESTING ; MATERIALS SCIENCE ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; MICROSTRUCTURE ; MOLTEN METAL-WATER REACTIONS ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; PRESSURE RANGE MEGA PA 10-100 ; Rupture disc ; RUPTURES ; SIMULATORS ; SODIUM ; Sodium–water reaction ; Solidification ; STAINLESS STEELS ; STEAM GENERATORS ; SURFACES ; TRANSMISSION ELECTRON MICROSCOPY ; TWINNING</subject><ispartof>Materials characterization, 2008-08, Vol.59 (8), p.1088-1095</ispartof><rights>2007 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-64a656adc07aee6a0b0a943ac691dedd01549947464a1caf87d7b13d750dbd1a3</citedby><cites>FETCH-LOGICAL-c367t-64a656adc07aee6a0b0a943ac691dedd01549947464a1caf87d7b13d750dbd1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchar.2007.08.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20430674$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21140760$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sudha, C.</creatorcontrib><creatorcontrib>Parameswaran, P.</creatorcontrib><creatorcontrib>Kishore, S.</creatorcontrib><creatorcontrib>Murthy, C. Meikanda</creatorcontrib><creatorcontrib>Rajan, M.</creatorcontrib><creatorcontrib>Vijayalakshmi, M.</creatorcontrib><creatorcontrib>Raghunathan, V.S.</creatorcontrib><title>Microstructure and deformation mode of a stainless steel rupture disc exposed to sodium–water reaction</title><title>Materials characterization</title><description>This paper deals with microstructural studies carried out on an austenitic stainless steel rupture disc which was exposed to sodium–water reaction. The rupture disc was part of a leak simulator put in a micro leak test section which was used to study the ‘self wastage’ of steam generator tubes. During micro leak testing, the rupture disc failed exhibiting a linear crack at a much lower pressure of 10 MPa rather than bursting open at the higher designed pressure of 15 MPa. The failed rupture disc revealed different microstructural features on the inner (steam exposed) and outer (sodium exposed) surfaces. Using microstructure as the signature, the temperature experienced by the rupture disc was predicted as ≥ 1273 K. Evidence for the exposure of the rupture disc to highly exothermic sodium–water reaction was obtained in the form of sodium rich debris, microcracks and deformation bands. Detailed transmission electron microscopy revealed the nature of deformation bands as deformation twins which is not a preferred failure mode for austenitic stainless steels.</description><subject>Applied sciences</subject><subject>Austenitic stainless steel</subject><subject>AUSTENITIC STEELS</subject><subject>CRACKS</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DEFORMATION</subject><subject>Exact sciences and technology</subject><subject>Fractures</subject><subject>LEAK TESTING</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>MICROSTRUCTURE</subject><subject>MOLTEN METAL-WATER REACTIONS</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>PRESSURE RANGE MEGA PA 10-100</subject><subject>Rupture disc</subject><subject>RUPTURES</subject><subject>SIMULATORS</subject><subject>SODIUM</subject><subject>Sodium–water reaction</subject><subject>Solidification</subject><subject>STAINLESS STEELS</subject><subject>STEAM GENERATORS</subject><subject>SURFACES</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>TWINNING</subject><issn>1044-5803</issn><issn>1873-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKBDEQRRtR8PkJQkBcdluZTifdKxHxBYobXYeapJrJMNMZkoyPnf_gH_olph1x66pqce6turcojjlUHLg8m1dLTGaGoZoAqAraCmrYKvZ4q-pS8LbbzjsIUTYt1LvFfoxzAJAtV3vF7MGZ4GMKa5PWgRgOllnqfciWzg9s6S0x3zNkMaEbFhRj3ogWLKxXPwrromH0tvKRLEueRW_devn18fmKiQILhGZ0Oix2elxEOvqdB8Xz9dXT5W15_3hzd3lxX5paqlRKgbKRaA0oJJIIU8BO1Ghkxy1ZC7wRXSeUyCA32LfKqimvrWrATi3H-qA42fjmUE5H4xKZmfHDQCbpCecClIRMNRtqDB8D9XoV3BLDu-agx1L1XP-WqsdSNbQ6l5p1pxvdCqPBRR9wMC7-iScgapBKZO58w1GO-uIojJ_QYMi6MD5ivfvn0jcW2pL8</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Sudha, C.</creator><creator>Parameswaran, P.</creator><creator>Kishore, S.</creator><creator>Murthy, C. Meikanda</creator><creator>Rajan, M.</creator><creator>Vijayalakshmi, M.</creator><creator>Raghunathan, V.S.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20080801</creationdate><title>Microstructure and deformation mode of a stainless steel rupture disc exposed to sodium–water reaction</title><author>Sudha, C. ; Parameswaran, P. ; Kishore, S. ; Murthy, C. Meikanda ; Rajan, M. ; Vijayalakshmi, M. ; Raghunathan, V.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-64a656adc07aee6a0b0a943ac691dedd01549947464a1caf87d7b13d750dbd1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Austenitic stainless steel</topic><topic>AUSTENITIC STEELS</topic><topic>CRACKS</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DEFORMATION</topic><topic>Exact sciences and technology</topic><topic>Fractures</topic><topic>LEAK TESTING</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>MICROSTRUCTURE</topic><topic>MOLTEN METAL-WATER REACTIONS</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>PRESSURE RANGE MEGA PA 10-100</topic><topic>Rupture disc</topic><topic>RUPTURES</topic><topic>SIMULATORS</topic><topic>SODIUM</topic><topic>Sodium–water reaction</topic><topic>Solidification</topic><topic>STAINLESS STEELS</topic><topic>STEAM GENERATORS</topic><topic>SURFACES</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>TWINNING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudha, C.</creatorcontrib><creatorcontrib>Parameswaran, P.</creatorcontrib><creatorcontrib>Kishore, S.</creatorcontrib><creatorcontrib>Murthy, C. Meikanda</creatorcontrib><creatorcontrib>Rajan, M.</creatorcontrib><creatorcontrib>Vijayalakshmi, M.</creatorcontrib><creatorcontrib>Raghunathan, V.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Materials characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudha, C.</au><au>Parameswaran, P.</au><au>Kishore, S.</au><au>Murthy, C. Meikanda</au><au>Rajan, M.</au><au>Vijayalakshmi, M.</au><au>Raghunathan, V.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and deformation mode of a stainless steel rupture disc exposed to sodium–water reaction</atitle><jtitle>Materials characterization</jtitle><date>2008-08-01</date><risdate>2008</risdate><volume>59</volume><issue>8</issue><spage>1088</spage><epage>1095</epage><pages>1088-1095</pages><issn>1044-5803</issn><eissn>1873-4189</eissn><abstract>This paper deals with microstructural studies carried out on an austenitic stainless steel rupture disc which was exposed to sodium–water reaction. The rupture disc was part of a leak simulator put in a micro leak test section which was used to study the ‘self wastage’ of steam generator tubes. During micro leak testing, the rupture disc failed exhibiting a linear crack at a much lower pressure of 10 MPa rather than bursting open at the higher designed pressure of 15 MPa. The failed rupture disc revealed different microstructural features on the inner (steam exposed) and outer (sodium exposed) surfaces. Using microstructure as the signature, the temperature experienced by the rupture disc was predicted as ≥ 1273 K. Evidence for the exposure of the rupture disc to highly exothermic sodium–water reaction was obtained in the form of sodium rich debris, microcracks and deformation bands. Detailed transmission electron microscopy revealed the nature of deformation bands as deformation twins which is not a preferred failure mode for austenitic stainless steels.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.matchar.2007.08.030</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-5803
ispartof Materials characterization, 2008-08, Vol.59 (8), p.1088-1095
issn 1044-5803
1873-4189
language eng
recordid cdi_osti_scitechconnect_21140760
source Elsevier ScienceDirect Journals
subjects Applied sciences
Austenitic stainless steel
AUSTENITIC STEELS
CRACKS
Cross-disciplinary physics: materials science
rheology
DEFORMATION
Exact sciences and technology
Fractures
LEAK TESTING
MATERIALS SCIENCE
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
MICROSTRUCTURE
MOLTEN METAL-WATER REACTIONS
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
PRESSURE RANGE MEGA PA 10-100
Rupture disc
RUPTURES
SIMULATORS
SODIUM
Sodium–water reaction
Solidification
STAINLESS STEELS
STEAM GENERATORS
SURFACES
TRANSMISSION ELECTRON MICROSCOPY
TWINNING
title Microstructure and deformation mode of a stainless steel rupture disc exposed to sodium–water reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20deformation%20mode%20of%20a%20stainless%20steel%20rupture%20disc%20exposed%20to%20sodium%E2%80%93water%20reaction&rft.jtitle=Materials%20characterization&rft.au=Sudha,%20C.&rft.date=2008-08-01&rft.volume=59&rft.issue=8&rft.spage=1088&rft.epage=1095&rft.pages=1088-1095&rft.issn=1044-5803&rft.eissn=1873-4189&rft_id=info:doi/10.1016/j.matchar.2007.08.030&rft_dat=%3Celsevier_osti_%3ES1044580307003208%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1044580307003208&rfr_iscdi=true