Operational characteristics of a parallel jet MILD combustion burner system

This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2009-02, Vol.156 (2), p.429-438
Hauptverfasser: Szegö, G.G., Dally, B.B., Nathan, G.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 438
container_issue 2
container_start_page 429
container_title Combustion and flame
container_volume 156
creator Szegö, G.G.
Dally, B.B.
Nathan, G.J.
description This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presented for cases with and without combustion air preheat, in addition to global temperature and emission measurements for a range of equivalence ratio, heat extraction, air preheat and fuel dilution levels. The present furnace/burner configuration proved to operate without the need for external air preheating, and achieved a high degree of temperature uniformity. Based on an analysis of the temperature distribution and emissions, PSR model predictions, and equilibrium calculations, the CO formation was found to be related to the mixing patterns and furnace temperature rather than reaction quenching by the heat exchanger. The critical equivalence ratio, or excess air level, which maintains low CO emissions is reported for different heat exchanger positions, and an optimum operating condition is identified. Results of CO and NO x emissions, together with visual observations and a simplified two-dimensional analysis of the furnace aerodynamics, demonstrate that fuel jet momentum controls the stability of this multiple jet system. A stability diagram showing the threshold for stable operation is reported, which is not explained by previous stability criteria.
doi_str_mv 10.1016/j.combustflame.2008.08.009
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21137927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218008002551</els_id><sourcerecordid>1082204765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-46a4dc1527236d758443631fc3942893612a00ab7ce8e53ec5cfb1edacc857b13</originalsourceid><addsrcrecordid>eNqNkdtq3EAMhk1oINuk72BaCr3xVpqDx-5dSXoI3ZKb9noYyzKZxYftzGwgb98xu5ReBgQC8Um_pL8o3iJsEbD-uN_SMnXHmIbRTbwVAM12DWgvig1qXVeiFfiq2AAgVAIbuCpex7gHAKOk3BQ_Hg4cXPLL7MaSHl1wlDj4mDzFchlKVx5ybRx5LPecyp_3u7vyLJl7yu4YZg5lfI6Jp5vicnBj5DfnfF38_vrl1-33avfw7f72864ijSpVqnaqJ9TCCFn3RjdKyVriQLJVomlljcIBuM4QN6wlk6ahQ-4dUaNNh_K6eHeau-QlbCSfmB5pmWemZAWiNK0wmfpwog5h-XPkmOzkI_E4upmXY7QIjRBgUMsXosrUOqOfTiiFJcbAgz0EP7nwnCG7WmL39n9L7GqJXQPa3Pz-rOMiuXEIbiYf_00QCEYqEJm7O3Gcv_jkOaxH8kzc-7De2C_-JXJ_AVLBp38</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082204765</pqid></control><display><type>article</type><title>Operational characteristics of a parallel jet MILD combustion burner system</title><source>Elsevier ScienceDirect Journals</source><creator>Szegö, G.G. ; Dally, B.B. ; Nathan, G.J.</creator><creatorcontrib>Szegö, G.G. ; Dally, B.B. ; Nathan, G.J.</creatorcontrib><description>This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presented for cases with and without combustion air preheat, in addition to global temperature and emission measurements for a range of equivalence ratio, heat extraction, air preheat and fuel dilution levels. The present furnace/burner configuration proved to operate without the need for external air preheating, and achieved a high degree of temperature uniformity. Based on an analysis of the temperature distribution and emissions, PSR model predictions, and equilibrium calculations, the CO formation was found to be related to the mixing patterns and furnace temperature rather than reaction quenching by the heat exchanger. The critical equivalence ratio, or excess air level, which maintains low CO emissions is reported for different heat exchanger positions, and an optimum operating condition is identified. Results of CO and NO x emissions, together with visual observations and a simplified two-dimensional analysis of the furnace aerodynamics, demonstrate that fuel jet momentum controls the stability of this multiple jet system. A stability diagram showing the threshold for stable operation is reported, which is not explained by previous stability criteria.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2008.08.009</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>AERODYNAMICS ; AIR ; Applied sciences ; BENCH-SCALE EXPERIMENTS ; BURNERS ; CARBON MONOXIDE ; CO emissions ; COMBUSTION ; Combustion of gaseous fuels ; Combustion. Flame ; CONFIGURATION ; DIAGRAMS ; DILUTION ; EMISSION ; Emission analysis ; Energy ; Energy. Thermal use of fuels ; ENGINEERING ; EQUILIBRIUM ; Equivalence ratio ; Exact sciences and technology ; FUELS ; FURNACES ; HEAT EXCHANGERS ; HEAT EXTRACTION ; JETS ; Mathematical models ; MILD furnace ; MILD furnaces ; MIXING ; NITROGEN OXIDES ; OPERATION ; Parallel jet burner ; Parallel jet burners ; STABILITY ; Stability limits ; TEMPERATURE DEPENDENCE ; TEMPERATURE DISTRIBUTION ; Theoretical studies. Data and constants. Metering ; TWO-DIMENSIONAL CALCULATIONS ; WALLS</subject><ispartof>Combustion and flame, 2009-02, Vol.156 (2), p.429-438</ispartof><rights>2008 The Combustion Institute</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-46a4dc1527236d758443631fc3942893612a00ab7ce8e53ec5cfb1edacc857b13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218008002551$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21073402$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21137927$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Szegö, G.G.</creatorcontrib><creatorcontrib>Dally, B.B.</creatorcontrib><creatorcontrib>Nathan, G.J.</creatorcontrib><title>Operational characteristics of a parallel jet MILD combustion burner system</title><title>Combustion and flame</title><description>This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presented for cases with and without combustion air preheat, in addition to global temperature and emission measurements for a range of equivalence ratio, heat extraction, air preheat and fuel dilution levels. The present furnace/burner configuration proved to operate without the need for external air preheating, and achieved a high degree of temperature uniformity. Based on an analysis of the temperature distribution and emissions, PSR model predictions, and equilibrium calculations, the CO formation was found to be related to the mixing patterns and furnace temperature rather than reaction quenching by the heat exchanger. The critical equivalence ratio, or excess air level, which maintains low CO emissions is reported for different heat exchanger positions, and an optimum operating condition is identified. Results of CO and NO x emissions, together with visual observations and a simplified two-dimensional analysis of the furnace aerodynamics, demonstrate that fuel jet momentum controls the stability of this multiple jet system. A stability diagram showing the threshold for stable operation is reported, which is not explained by previous stability criteria.</description><subject>AERODYNAMICS</subject><subject>AIR</subject><subject>Applied sciences</subject><subject>BENCH-SCALE EXPERIMENTS</subject><subject>BURNERS</subject><subject>CARBON MONOXIDE</subject><subject>CO emissions</subject><subject>COMBUSTION</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>CONFIGURATION</subject><subject>DIAGRAMS</subject><subject>DILUTION</subject><subject>EMISSION</subject><subject>Emission analysis</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>ENGINEERING</subject><subject>EQUILIBRIUM</subject><subject>Equivalence ratio</subject><subject>Exact sciences and technology</subject><subject>FUELS</subject><subject>FURNACES</subject><subject>HEAT EXCHANGERS</subject><subject>HEAT EXTRACTION</subject><subject>JETS</subject><subject>Mathematical models</subject><subject>MILD furnace</subject><subject>MILD furnaces</subject><subject>MIXING</subject><subject>NITROGEN OXIDES</subject><subject>OPERATION</subject><subject>Parallel jet burner</subject><subject>Parallel jet burners</subject><subject>STABILITY</subject><subject>Stability limits</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TEMPERATURE DISTRIBUTION</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><subject>WALLS</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkdtq3EAMhk1oINuk72BaCr3xVpqDx-5dSXoI3ZKb9noYyzKZxYftzGwgb98xu5ReBgQC8Um_pL8o3iJsEbD-uN_SMnXHmIbRTbwVAM12DWgvig1qXVeiFfiq2AAgVAIbuCpex7gHAKOk3BQ_Hg4cXPLL7MaSHl1wlDj4mDzFchlKVx5ybRx5LPecyp_3u7vyLJl7yu4YZg5lfI6Jp5vicnBj5DfnfF38_vrl1-33avfw7f72864ijSpVqnaqJ9TCCFn3RjdKyVriQLJVomlljcIBuM4QN6wlk6ahQ-4dUaNNh_K6eHeau-QlbCSfmB5pmWemZAWiNK0wmfpwog5h-XPkmOzkI_E4upmXY7QIjRBgUMsXosrUOqOfTiiFJcbAgz0EP7nwnCG7WmL39n9L7GqJXQPa3Pz-rOMiuXEIbiYf_00QCEYqEJm7O3Gcv_jkOaxH8kzc-7De2C_-JXJ_AVLBp38</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Szegö, G.G.</creator><creator>Dally, B.B.</creator><creator>Nathan, G.J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20090201</creationdate><title>Operational characteristics of a parallel jet MILD combustion burner system</title><author>Szegö, G.G. ; Dally, B.B. ; Nathan, G.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-46a4dc1527236d758443631fc3942893612a00ab7ce8e53ec5cfb1edacc857b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>AERODYNAMICS</topic><topic>AIR</topic><topic>Applied sciences</topic><topic>BENCH-SCALE EXPERIMENTS</topic><topic>BURNERS</topic><topic>CARBON MONOXIDE</topic><topic>CO emissions</topic><topic>COMBUSTION</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>CONFIGURATION</topic><topic>DIAGRAMS</topic><topic>DILUTION</topic><topic>EMISSION</topic><topic>Emission analysis</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>ENGINEERING</topic><topic>EQUILIBRIUM</topic><topic>Equivalence ratio</topic><topic>Exact sciences and technology</topic><topic>FUELS</topic><topic>FURNACES</topic><topic>HEAT EXCHANGERS</topic><topic>HEAT EXTRACTION</topic><topic>JETS</topic><topic>Mathematical models</topic><topic>MILD furnace</topic><topic>MILD furnaces</topic><topic>MIXING</topic><topic>NITROGEN OXIDES</topic><topic>OPERATION</topic><topic>Parallel jet burner</topic><topic>Parallel jet burners</topic><topic>STABILITY</topic><topic>Stability limits</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TEMPERATURE DISTRIBUTION</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><topic>WALLS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szegö, G.G.</creatorcontrib><creatorcontrib>Dally, B.B.</creatorcontrib><creatorcontrib>Nathan, G.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szegö, G.G.</au><au>Dally, B.B.</au><au>Nathan, G.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operational characteristics of a parallel jet MILD combustion burner system</atitle><jtitle>Combustion and flame</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>156</volume><issue>2</issue><spage>429</spage><epage>438</epage><pages>429-438</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presented for cases with and without combustion air preheat, in addition to global temperature and emission measurements for a range of equivalence ratio, heat extraction, air preheat and fuel dilution levels. The present furnace/burner configuration proved to operate without the need for external air preheating, and achieved a high degree of temperature uniformity. Based on an analysis of the temperature distribution and emissions, PSR model predictions, and equilibrium calculations, the CO formation was found to be related to the mixing patterns and furnace temperature rather than reaction quenching by the heat exchanger. The critical equivalence ratio, or excess air level, which maintains low CO emissions is reported for different heat exchanger positions, and an optimum operating condition is identified. Results of CO and NO x emissions, together with visual observations and a simplified two-dimensional analysis of the furnace aerodynamics, demonstrate that fuel jet momentum controls the stability of this multiple jet system. A stability diagram showing the threshold for stable operation is reported, which is not explained by previous stability criteria.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2008.08.009</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2009-02, Vol.156 (2), p.429-438
issn 0010-2180
1556-2921
language eng
recordid cdi_osti_scitechconnect_21137927
source Elsevier ScienceDirect Journals
subjects AERODYNAMICS
AIR
Applied sciences
BENCH-SCALE EXPERIMENTS
BURNERS
CARBON MONOXIDE
CO emissions
COMBUSTION
Combustion of gaseous fuels
Combustion. Flame
CONFIGURATION
DIAGRAMS
DILUTION
EMISSION
Emission analysis
Energy
Energy. Thermal use of fuels
ENGINEERING
EQUILIBRIUM
Equivalence ratio
Exact sciences and technology
FUELS
FURNACES
HEAT EXCHANGERS
HEAT EXTRACTION
JETS
Mathematical models
MILD furnace
MILD furnaces
MIXING
NITROGEN OXIDES
OPERATION
Parallel jet burner
Parallel jet burners
STABILITY
Stability limits
TEMPERATURE DEPENDENCE
TEMPERATURE DISTRIBUTION
Theoretical studies. Data and constants. Metering
TWO-DIMENSIONAL CALCULATIONS
WALLS
title Operational characteristics of a parallel jet MILD combustion burner system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operational%20characteristics%20of%20a%20parallel%20jet%20MILD%20combustion%20burner%20system&rft.jtitle=Combustion%20and%20flame&rft.au=Szeg%C3%B6,%20G.G.&rft.date=2009-02-01&rft.volume=156&rft.issue=2&rft.spage=429&rft.epage=438&rft.pages=429-438&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/j.combustflame.2008.08.009&rft_dat=%3Cproquest_osti_%3E1082204765%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082204765&rft_id=info:pmid/&rft_els_id=S0010218008002551&rfr_iscdi=true