Operational characteristics of a parallel jet MILD combustion burner system
This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presen...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2009-02, Vol.156 (2), p.429-438 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 438 |
---|---|
container_issue | 2 |
container_start_page | 429 |
container_title | Combustion and flame |
container_volume | 156 |
creator | Szegö, G.G. Dally, B.B. Nathan, G.J. |
description | This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presented for cases with and without combustion air preheat, in addition to global temperature and emission measurements for a range of equivalence ratio, heat extraction, air preheat and fuel dilution levels. The present furnace/burner configuration proved to operate without the need for external air preheating, and achieved a high degree of temperature uniformity. Based on an analysis of the temperature distribution and emissions, PSR model predictions, and equilibrium calculations, the CO formation was found to be related to the mixing patterns and furnace temperature rather than reaction quenching by the heat exchanger. The critical equivalence ratio, or excess air level, which maintains low CO emissions is reported for different heat exchanger positions, and an optimum operating condition is identified. Results of CO and NO
x
emissions, together with visual observations and a simplified two-dimensional analysis of the furnace aerodynamics, demonstrate that fuel jet momentum controls the stability of this multiple jet system. A stability diagram showing the threshold for stable operation is reported, which is not explained by previous stability criteria. |
doi_str_mv | 10.1016/j.combustflame.2008.08.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21137927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218008002551</els_id><sourcerecordid>1082204765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-46a4dc1527236d758443631fc3942893612a00ab7ce8e53ec5cfb1edacc857b13</originalsourceid><addsrcrecordid>eNqNkdtq3EAMhk1oINuk72BaCr3xVpqDx-5dSXoI3ZKb9noYyzKZxYftzGwgb98xu5ReBgQC8Um_pL8o3iJsEbD-uN_SMnXHmIbRTbwVAM12DWgvig1qXVeiFfiq2AAgVAIbuCpex7gHAKOk3BQ_Hg4cXPLL7MaSHl1wlDj4mDzFchlKVx5ybRx5LPecyp_3u7vyLJl7yu4YZg5lfI6Jp5vicnBj5DfnfF38_vrl1-33avfw7f72864ijSpVqnaqJ9TCCFn3RjdKyVriQLJVomlljcIBuM4QN6wlk6ahQ-4dUaNNh_K6eHeau-QlbCSfmB5pmWemZAWiNK0wmfpwog5h-XPkmOzkI_E4upmXY7QIjRBgUMsXosrUOqOfTiiFJcbAgz0EP7nwnCG7WmL39n9L7GqJXQPa3Pz-rOMiuXEIbiYf_00QCEYqEJm7O3Gcv_jkOaxH8kzc-7De2C_-JXJ_AVLBp38</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082204765</pqid></control><display><type>article</type><title>Operational characteristics of a parallel jet MILD combustion burner system</title><source>Elsevier ScienceDirect Journals</source><creator>Szegö, G.G. ; Dally, B.B. ; Nathan, G.J.</creator><creatorcontrib>Szegö, G.G. ; Dally, B.B. ; Nathan, G.J.</creatorcontrib><description>This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presented for cases with and without combustion air preheat, in addition to global temperature and emission measurements for a range of equivalence ratio, heat extraction, air preheat and fuel dilution levels. The present furnace/burner configuration proved to operate without the need for external air preheating, and achieved a high degree of temperature uniformity. Based on an analysis of the temperature distribution and emissions, PSR model predictions, and equilibrium calculations, the CO formation was found to be related to the mixing patterns and furnace temperature rather than reaction quenching by the heat exchanger. The critical equivalence ratio, or excess air level, which maintains low CO emissions is reported for different heat exchanger positions, and an optimum operating condition is identified. Results of CO and NO
x
emissions, together with visual observations and a simplified two-dimensional analysis of the furnace aerodynamics, demonstrate that fuel jet momentum controls the stability of this multiple jet system. A stability diagram showing the threshold for stable operation is reported, which is not explained by previous stability criteria.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2008.08.009</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>AERODYNAMICS ; AIR ; Applied sciences ; BENCH-SCALE EXPERIMENTS ; BURNERS ; CARBON MONOXIDE ; CO emissions ; COMBUSTION ; Combustion of gaseous fuels ; Combustion. Flame ; CONFIGURATION ; DIAGRAMS ; DILUTION ; EMISSION ; Emission analysis ; Energy ; Energy. Thermal use of fuels ; ENGINEERING ; EQUILIBRIUM ; Equivalence ratio ; Exact sciences and technology ; FUELS ; FURNACES ; HEAT EXCHANGERS ; HEAT EXTRACTION ; JETS ; Mathematical models ; MILD furnace ; MILD furnaces ; MIXING ; NITROGEN OXIDES ; OPERATION ; Parallel jet burner ; Parallel jet burners ; STABILITY ; Stability limits ; TEMPERATURE DEPENDENCE ; TEMPERATURE DISTRIBUTION ; Theoretical studies. Data and constants. Metering ; TWO-DIMENSIONAL CALCULATIONS ; WALLS</subject><ispartof>Combustion and flame, 2009-02, Vol.156 (2), p.429-438</ispartof><rights>2008 The Combustion Institute</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-46a4dc1527236d758443631fc3942893612a00ab7ce8e53ec5cfb1edacc857b13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218008002551$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21073402$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21137927$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Szegö, G.G.</creatorcontrib><creatorcontrib>Dally, B.B.</creatorcontrib><creatorcontrib>Nathan, G.J.</creatorcontrib><title>Operational characteristics of a parallel jet MILD combustion burner system</title><title>Combustion and flame</title><description>This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presented for cases with and without combustion air preheat, in addition to global temperature and emission measurements for a range of equivalence ratio, heat extraction, air preheat and fuel dilution levels. The present furnace/burner configuration proved to operate without the need for external air preheating, and achieved a high degree of temperature uniformity. Based on an analysis of the temperature distribution and emissions, PSR model predictions, and equilibrium calculations, the CO formation was found to be related to the mixing patterns and furnace temperature rather than reaction quenching by the heat exchanger. The critical equivalence ratio, or excess air level, which maintains low CO emissions is reported for different heat exchanger positions, and an optimum operating condition is identified. Results of CO and NO
x
emissions, together with visual observations and a simplified two-dimensional analysis of the furnace aerodynamics, demonstrate that fuel jet momentum controls the stability of this multiple jet system. A stability diagram showing the threshold for stable operation is reported, which is not explained by previous stability criteria.</description><subject>AERODYNAMICS</subject><subject>AIR</subject><subject>Applied sciences</subject><subject>BENCH-SCALE EXPERIMENTS</subject><subject>BURNERS</subject><subject>CARBON MONOXIDE</subject><subject>CO emissions</subject><subject>COMBUSTION</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>CONFIGURATION</subject><subject>DIAGRAMS</subject><subject>DILUTION</subject><subject>EMISSION</subject><subject>Emission analysis</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>ENGINEERING</subject><subject>EQUILIBRIUM</subject><subject>Equivalence ratio</subject><subject>Exact sciences and technology</subject><subject>FUELS</subject><subject>FURNACES</subject><subject>HEAT EXCHANGERS</subject><subject>HEAT EXTRACTION</subject><subject>JETS</subject><subject>Mathematical models</subject><subject>MILD furnace</subject><subject>MILD furnaces</subject><subject>MIXING</subject><subject>NITROGEN OXIDES</subject><subject>OPERATION</subject><subject>Parallel jet burner</subject><subject>Parallel jet burners</subject><subject>STABILITY</subject><subject>Stability limits</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TEMPERATURE DISTRIBUTION</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><subject>WALLS</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkdtq3EAMhk1oINuk72BaCr3xVpqDx-5dSXoI3ZKb9noYyzKZxYftzGwgb98xu5ReBgQC8Um_pL8o3iJsEbD-uN_SMnXHmIbRTbwVAM12DWgvig1qXVeiFfiq2AAgVAIbuCpex7gHAKOk3BQ_Hg4cXPLL7MaSHl1wlDj4mDzFchlKVx5ybRx5LPecyp_3u7vyLJl7yu4YZg5lfI6Jp5vicnBj5DfnfF38_vrl1-33avfw7f72864ijSpVqnaqJ9TCCFn3RjdKyVriQLJVomlljcIBuM4QN6wlk6ahQ-4dUaNNh_K6eHeau-QlbCSfmB5pmWemZAWiNK0wmfpwog5h-XPkmOzkI_E4upmXY7QIjRBgUMsXosrUOqOfTiiFJcbAgz0EP7nwnCG7WmL39n9L7GqJXQPa3Pz-rOMiuXEIbiYf_00QCEYqEJm7O3Gcv_jkOaxH8kzc-7De2C_-JXJ_AVLBp38</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Szegö, G.G.</creator><creator>Dally, B.B.</creator><creator>Nathan, G.J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20090201</creationdate><title>Operational characteristics of a parallel jet MILD combustion burner system</title><author>Szegö, G.G. ; Dally, B.B. ; Nathan, G.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-46a4dc1527236d758443631fc3942893612a00ab7ce8e53ec5cfb1edacc857b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>AERODYNAMICS</topic><topic>AIR</topic><topic>Applied sciences</topic><topic>BENCH-SCALE EXPERIMENTS</topic><topic>BURNERS</topic><topic>CARBON MONOXIDE</topic><topic>CO emissions</topic><topic>COMBUSTION</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>CONFIGURATION</topic><topic>DIAGRAMS</topic><topic>DILUTION</topic><topic>EMISSION</topic><topic>Emission analysis</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>ENGINEERING</topic><topic>EQUILIBRIUM</topic><topic>Equivalence ratio</topic><topic>Exact sciences and technology</topic><topic>FUELS</topic><topic>FURNACES</topic><topic>HEAT EXCHANGERS</topic><topic>HEAT EXTRACTION</topic><topic>JETS</topic><topic>Mathematical models</topic><topic>MILD furnace</topic><topic>MILD furnaces</topic><topic>MIXING</topic><topic>NITROGEN OXIDES</topic><topic>OPERATION</topic><topic>Parallel jet burner</topic><topic>Parallel jet burners</topic><topic>STABILITY</topic><topic>Stability limits</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TEMPERATURE DISTRIBUTION</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><topic>WALLS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szegö, G.G.</creatorcontrib><creatorcontrib>Dally, B.B.</creatorcontrib><creatorcontrib>Nathan, G.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szegö, G.G.</au><au>Dally, B.B.</au><au>Nathan, G.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operational characteristics of a parallel jet MILD combustion burner system</atitle><jtitle>Combustion and flame</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>156</volume><issue>2</issue><spage>429</spage><epage>438</epage><pages>429-438</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presented for cases with and without combustion air preheat, in addition to global temperature and emission measurements for a range of equivalence ratio, heat extraction, air preheat and fuel dilution levels. The present furnace/burner configuration proved to operate without the need for external air preheating, and achieved a high degree of temperature uniformity. Based on an analysis of the temperature distribution and emissions, PSR model predictions, and equilibrium calculations, the CO formation was found to be related to the mixing patterns and furnace temperature rather than reaction quenching by the heat exchanger. The critical equivalence ratio, or excess air level, which maintains low CO emissions is reported for different heat exchanger positions, and an optimum operating condition is identified. Results of CO and NO
x
emissions, together with visual observations and a simplified two-dimensional analysis of the furnace aerodynamics, demonstrate that fuel jet momentum controls the stability of this multiple jet system. A stability diagram showing the threshold for stable operation is reported, which is not explained by previous stability criteria.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2008.08.009</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2009-02, Vol.156 (2), p.429-438 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_osti_scitechconnect_21137927 |
source | Elsevier ScienceDirect Journals |
subjects | AERODYNAMICS AIR Applied sciences BENCH-SCALE EXPERIMENTS BURNERS CARBON MONOXIDE CO emissions COMBUSTION Combustion of gaseous fuels Combustion. Flame CONFIGURATION DIAGRAMS DILUTION EMISSION Emission analysis Energy Energy. Thermal use of fuels ENGINEERING EQUILIBRIUM Equivalence ratio Exact sciences and technology FUELS FURNACES HEAT EXCHANGERS HEAT EXTRACTION JETS Mathematical models MILD furnace MILD furnaces MIXING NITROGEN OXIDES OPERATION Parallel jet burner Parallel jet burners STABILITY Stability limits TEMPERATURE DEPENDENCE TEMPERATURE DISTRIBUTION Theoretical studies. Data and constants. Metering TWO-DIMENSIONAL CALCULATIONS WALLS |
title | Operational characteristics of a parallel jet MILD combustion burner system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operational%20characteristics%20of%20a%20parallel%20jet%20MILD%20combustion%20burner%20system&rft.jtitle=Combustion%20and%20flame&rft.au=Szeg%C3%B6,%20G.G.&rft.date=2009-02-01&rft.volume=156&rft.issue=2&rft.spage=429&rft.epage=438&rft.pages=429-438&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/j.combustflame.2008.08.009&rft_dat=%3Cproquest_osti_%3E1082204765%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082204765&rft_id=info:pmid/&rft_els_id=S0010218008002551&rfr_iscdi=true |