Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography

Extreme ultraviolet (EUV) radiation from laser-produced plasma (LPP) has been thoroughly studied for application in mass production of next-generation semiconductor devices. One critical issue for the realization of an LPP-EUV light source for lithography is the conversion efficiency (CE) from incid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2008-05, Vol.15 (5)
Hauptverfasser: Nishihara, Katsunobu, Sunahara, Atsushi, Sasaki, Akira, Nunami, Masanori, Tanuma, Hajime, Fujioka, Shinsuke, Shimada, Yoshinori, Fujima, Kazumi, Furukawa, Hiroyuki, Kato, Takako, Koike, Fumihiro, More, Richard, Murakami, Masakatsu, Nishikawa, Takeshi, Zhakhovskii, Vasilii, Gamata, Kouhei, Takata, Akira, Ueda, Hirofumi, Nishimura, Hiroaki, Izawa, Yasukazu, Miyanaga, Noriaki, Mima, Kunoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physics of plasmas
container_volume 15
creator Nishihara, Katsunobu
Sunahara, Atsushi
Sasaki, Akira
Nunami, Masanori
Tanuma, Hajime
Fujioka, Shinsuke
Shimada, Yoshinori
Fujima, Kazumi
Furukawa, Hiroyuki
Kato, Takako
Koike, Fumihiro
More, Richard
Murakami, Masakatsu
Nishikawa, Takeshi
Zhakhovskii, Vasilii
Gamata, Kouhei
Takata, Akira
Ueda, Hirofumi
Nishimura, Hiroaki
Izawa, Yasukazu
Miyanaga, Noriaki
Mima, Kunoki
description Extreme ultraviolet (EUV) radiation from laser-produced plasma (LPP) has been thoroughly studied for application in mass production of next-generation semiconductor devices. One critical issue for the realization of an LPP-EUV light source for lithography is the conversion efficiency (CE) from incident laser power to EUV radiation of 13.5-nm wavelength (within 2% bandwidth). Another issue is solving the problem of damage caused when debris reaches an EUV collecting mirror. Here, we present an improved power balance model, which can be used for the optimization of laser and target conditions to obtain high CE. An integrated numerical simulation code has been developed for the target design. The code agrees well with experimental results not only for CE but also for detailed EUV spectral structure. We propose a two-pulse irradiation scheme for high CE, and reduced ion debris using a carbon dioxide laser and a droplet or a punch-out target. Using our benchmarked numerical simulation code, we find a possibility to obtain CE up to 6–7%, which is more than twice that achieved to date. We discuss the reduction of ion energy within the two-pulse irradiation scheme. The mitigation of energetic ions by a magnetic field is also discussed, and we conclude that no serious instability occurs due to large ion gyroradius.
doi_str_mv 10.1063/1.2907154
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21120403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_2907154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-6f69b547d4f04fdb0a6ea286f933e40d141301f2ab27e89edbc17077e040228e3</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMouK4e_AcBTx665qtJe5TFL1jQg4K3kiaTbaRtliS72H9vl_U0L_M-zMCD0C0lK0okf6ArVhNFS3GGFpRUdaGkEufHrEghpfi-RFcp_RBChCyrBeo_ep0GjXfdlLxJWI8WR229zj6MuJtsDHYa9XDs_IgtHKAPOz9uZxLDb44wAN73OeqDDz1k3Pttl3EK-2gAuxDnRe7CNur5wzW6cLpPcPM_l-jr-elz_Vps3l_e1o-bwrCS50I6WbelUFY4IpxtiZagWSVdzTkIYqmgnFDHdMsUVDXY1lBFlAIiCGMV8CW6O90NKfsmGZ_BdCaMI5jcMErZDPKZuj9RJoaUIrhmF_2g49RQ0hxlNrT5l8n_ALLJaF8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Nishihara, Katsunobu ; Sunahara, Atsushi ; Sasaki, Akira ; Nunami, Masanori ; Tanuma, Hajime ; Fujioka, Shinsuke ; Shimada, Yoshinori ; Fujima, Kazumi ; Furukawa, Hiroyuki ; Kato, Takako ; Koike, Fumihiro ; More, Richard ; Murakami, Masakatsu ; Nishikawa, Takeshi ; Zhakhovskii, Vasilii ; Gamata, Kouhei ; Takata, Akira ; Ueda, Hirofumi ; Nishimura, Hiroaki ; Izawa, Yasukazu ; Miyanaga, Noriaki ; Mima, Kunoki</creator><creatorcontrib>Nishihara, Katsunobu ; Sunahara, Atsushi ; Sasaki, Akira ; Nunami, Masanori ; Tanuma, Hajime ; Fujioka, Shinsuke ; Shimada, Yoshinori ; Fujima, Kazumi ; Furukawa, Hiroyuki ; Kato, Takako ; Koike, Fumihiro ; More, Richard ; Murakami, Masakatsu ; Nishikawa, Takeshi ; Zhakhovskii, Vasilii ; Gamata, Kouhei ; Takata, Akira ; Ueda, Hirofumi ; Nishimura, Hiroaki ; Izawa, Yasukazu ; Miyanaga, Noriaki ; Mima, Kunoki</creatorcontrib><description>Extreme ultraviolet (EUV) radiation from laser-produced plasma (LPP) has been thoroughly studied for application in mass production of next-generation semiconductor devices. One critical issue for the realization of an LPP-EUV light source for lithography is the conversion efficiency (CE) from incident laser power to EUV radiation of 13.5-nm wavelength (within 2% bandwidth). Another issue is solving the problem of damage caused when debris reaches an EUV collecting mirror. Here, we present an improved power balance model, which can be used for the optimization of laser and target conditions to obtain high CE. An integrated numerical simulation code has been developed for the target design. The code agrees well with experimental results not only for CE but also for detailed EUV spectral structure. We propose a two-pulse irradiation scheme for high CE, and reduced ion debris using a carbon dioxide laser and a droplet or a punch-out target. Using our benchmarked numerical simulation code, we find a possibility to obtain CE up to 6–7%, which is more than twice that achieved to date. We discuss the reduction of ion energy within the two-pulse irradiation scheme. The mitigation of energetic ions by a magnetic field is also discussed, and we conclude that no serious instability occurs due to large ion gyroradius.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.2907154</identifier><language>eng</language><publisher>United States</publisher><subject>CARBON DIOXIDE LASERS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DESIGN ; DROPLETS ; EFFICIENCY ; EXTREME ULTRAVIOLET RADIATION ; HYDRODYNAMICS ; INSTABILITY ; LASER-PRODUCED PLASMA ; LIGHT SOURCES ; MAGNETIC FIELDS ; MIRRORS ; PLASMA PRODUCTION ; PULSED IRRADIATION ; SEMICONDUCTOR DEVICES ; SIMULATION ; TAIL IONS</subject><ispartof>Physics of plasmas, 2008-05, Vol.15 (5)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-6f69b547d4f04fdb0a6ea286f933e40d141301f2ab27e89edbc17077e040228e3</citedby><cites>FETCH-LOGICAL-c253t-6f69b547d4f04fdb0a6ea286f933e40d141301f2ab27e89edbc17077e040228e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21120403$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishihara, Katsunobu</creatorcontrib><creatorcontrib>Sunahara, Atsushi</creatorcontrib><creatorcontrib>Sasaki, Akira</creatorcontrib><creatorcontrib>Nunami, Masanori</creatorcontrib><creatorcontrib>Tanuma, Hajime</creatorcontrib><creatorcontrib>Fujioka, Shinsuke</creatorcontrib><creatorcontrib>Shimada, Yoshinori</creatorcontrib><creatorcontrib>Fujima, Kazumi</creatorcontrib><creatorcontrib>Furukawa, Hiroyuki</creatorcontrib><creatorcontrib>Kato, Takako</creatorcontrib><creatorcontrib>Koike, Fumihiro</creatorcontrib><creatorcontrib>More, Richard</creatorcontrib><creatorcontrib>Murakami, Masakatsu</creatorcontrib><creatorcontrib>Nishikawa, Takeshi</creatorcontrib><creatorcontrib>Zhakhovskii, Vasilii</creatorcontrib><creatorcontrib>Gamata, Kouhei</creatorcontrib><creatorcontrib>Takata, Akira</creatorcontrib><creatorcontrib>Ueda, Hirofumi</creatorcontrib><creatorcontrib>Nishimura, Hiroaki</creatorcontrib><creatorcontrib>Izawa, Yasukazu</creatorcontrib><creatorcontrib>Miyanaga, Noriaki</creatorcontrib><creatorcontrib>Mima, Kunoki</creatorcontrib><title>Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography</title><title>Physics of plasmas</title><description>Extreme ultraviolet (EUV) radiation from laser-produced plasma (LPP) has been thoroughly studied for application in mass production of next-generation semiconductor devices. One critical issue for the realization of an LPP-EUV light source for lithography is the conversion efficiency (CE) from incident laser power to EUV radiation of 13.5-nm wavelength (within 2% bandwidth). Another issue is solving the problem of damage caused when debris reaches an EUV collecting mirror. Here, we present an improved power balance model, which can be used for the optimization of laser and target conditions to obtain high CE. An integrated numerical simulation code has been developed for the target design. The code agrees well with experimental results not only for CE but also for detailed EUV spectral structure. We propose a two-pulse irradiation scheme for high CE, and reduced ion debris using a carbon dioxide laser and a droplet or a punch-out target. Using our benchmarked numerical simulation code, we find a possibility to obtain CE up to 6–7%, which is more than twice that achieved to date. We discuss the reduction of ion energy within the two-pulse irradiation scheme. The mitigation of energetic ions by a magnetic field is also discussed, and we conclude that no serious instability occurs due to large ion gyroradius.</description><subject>CARBON DIOXIDE LASERS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DESIGN</subject><subject>DROPLETS</subject><subject>EFFICIENCY</subject><subject>EXTREME ULTRAVIOLET RADIATION</subject><subject>HYDRODYNAMICS</subject><subject>INSTABILITY</subject><subject>LASER-PRODUCED PLASMA</subject><subject>LIGHT SOURCES</subject><subject>MAGNETIC FIELDS</subject><subject>MIRRORS</subject><subject>PLASMA PRODUCTION</subject><subject>PULSED IRRADIATION</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SIMULATION</subject><subject>TAIL IONS</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMouK4e_AcBTx665qtJe5TFL1jQg4K3kiaTbaRtliS72H9vl_U0L_M-zMCD0C0lK0okf6ArVhNFS3GGFpRUdaGkEufHrEghpfi-RFcp_RBChCyrBeo_ep0GjXfdlLxJWI8WR229zj6MuJtsDHYa9XDs_IgtHKAPOz9uZxLDb44wAN73OeqDDz1k3Pttl3EK-2gAuxDnRe7CNur5wzW6cLpPcPM_l-jr-elz_Vps3l_e1o-bwrCS50I6WbelUFY4IpxtiZagWSVdzTkIYqmgnFDHdMsUVDXY1lBFlAIiCGMV8CW6O90NKfsmGZ_BdCaMI5jcMErZDPKZuj9RJoaUIrhmF_2g49RQ0hxlNrT5l8n_ALLJaF8</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Nishihara, Katsunobu</creator><creator>Sunahara, Atsushi</creator><creator>Sasaki, Akira</creator><creator>Nunami, Masanori</creator><creator>Tanuma, Hajime</creator><creator>Fujioka, Shinsuke</creator><creator>Shimada, Yoshinori</creator><creator>Fujima, Kazumi</creator><creator>Furukawa, Hiroyuki</creator><creator>Kato, Takako</creator><creator>Koike, Fumihiro</creator><creator>More, Richard</creator><creator>Murakami, Masakatsu</creator><creator>Nishikawa, Takeshi</creator><creator>Zhakhovskii, Vasilii</creator><creator>Gamata, Kouhei</creator><creator>Takata, Akira</creator><creator>Ueda, Hirofumi</creator><creator>Nishimura, Hiroaki</creator><creator>Izawa, Yasukazu</creator><creator>Miyanaga, Noriaki</creator><creator>Mima, Kunoki</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20080501</creationdate><title>Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography</title><author>Nishihara, Katsunobu ; Sunahara, Atsushi ; Sasaki, Akira ; Nunami, Masanori ; Tanuma, Hajime ; Fujioka, Shinsuke ; Shimada, Yoshinori ; Fujima, Kazumi ; Furukawa, Hiroyuki ; Kato, Takako ; Koike, Fumihiro ; More, Richard ; Murakami, Masakatsu ; Nishikawa, Takeshi ; Zhakhovskii, Vasilii ; Gamata, Kouhei ; Takata, Akira ; Ueda, Hirofumi ; Nishimura, Hiroaki ; Izawa, Yasukazu ; Miyanaga, Noriaki ; Mima, Kunoki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-6f69b547d4f04fdb0a6ea286f933e40d141301f2ab27e89edbc17077e040228e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>CARBON DIOXIDE LASERS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DESIGN</topic><topic>DROPLETS</topic><topic>EFFICIENCY</topic><topic>EXTREME ULTRAVIOLET RADIATION</topic><topic>HYDRODYNAMICS</topic><topic>INSTABILITY</topic><topic>LASER-PRODUCED PLASMA</topic><topic>LIGHT SOURCES</topic><topic>MAGNETIC FIELDS</topic><topic>MIRRORS</topic><topic>PLASMA PRODUCTION</topic><topic>PULSED IRRADIATION</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SIMULATION</topic><topic>TAIL IONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishihara, Katsunobu</creatorcontrib><creatorcontrib>Sunahara, Atsushi</creatorcontrib><creatorcontrib>Sasaki, Akira</creatorcontrib><creatorcontrib>Nunami, Masanori</creatorcontrib><creatorcontrib>Tanuma, Hajime</creatorcontrib><creatorcontrib>Fujioka, Shinsuke</creatorcontrib><creatorcontrib>Shimada, Yoshinori</creatorcontrib><creatorcontrib>Fujima, Kazumi</creatorcontrib><creatorcontrib>Furukawa, Hiroyuki</creatorcontrib><creatorcontrib>Kato, Takako</creatorcontrib><creatorcontrib>Koike, Fumihiro</creatorcontrib><creatorcontrib>More, Richard</creatorcontrib><creatorcontrib>Murakami, Masakatsu</creatorcontrib><creatorcontrib>Nishikawa, Takeshi</creatorcontrib><creatorcontrib>Zhakhovskii, Vasilii</creatorcontrib><creatorcontrib>Gamata, Kouhei</creatorcontrib><creatorcontrib>Takata, Akira</creatorcontrib><creatorcontrib>Ueda, Hirofumi</creatorcontrib><creatorcontrib>Nishimura, Hiroaki</creatorcontrib><creatorcontrib>Izawa, Yasukazu</creatorcontrib><creatorcontrib>Miyanaga, Noriaki</creatorcontrib><creatorcontrib>Mima, Kunoki</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishihara, Katsunobu</au><au>Sunahara, Atsushi</au><au>Sasaki, Akira</au><au>Nunami, Masanori</au><au>Tanuma, Hajime</au><au>Fujioka, Shinsuke</au><au>Shimada, Yoshinori</au><au>Fujima, Kazumi</au><au>Furukawa, Hiroyuki</au><au>Kato, Takako</au><au>Koike, Fumihiro</au><au>More, Richard</au><au>Murakami, Masakatsu</au><au>Nishikawa, Takeshi</au><au>Zhakhovskii, Vasilii</au><au>Gamata, Kouhei</au><au>Takata, Akira</au><au>Ueda, Hirofumi</au><au>Nishimura, Hiroaki</au><au>Izawa, Yasukazu</au><au>Miyanaga, Noriaki</au><au>Mima, Kunoki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography</atitle><jtitle>Physics of plasmas</jtitle><date>2008-05-01</date><risdate>2008</risdate><volume>15</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>Extreme ultraviolet (EUV) radiation from laser-produced plasma (LPP) has been thoroughly studied for application in mass production of next-generation semiconductor devices. One critical issue for the realization of an LPP-EUV light source for lithography is the conversion efficiency (CE) from incident laser power to EUV radiation of 13.5-nm wavelength (within 2% bandwidth). Another issue is solving the problem of damage caused when debris reaches an EUV collecting mirror. Here, we present an improved power balance model, which can be used for the optimization of laser and target conditions to obtain high CE. An integrated numerical simulation code has been developed for the target design. The code agrees well with experimental results not only for CE but also for detailed EUV spectral structure. We propose a two-pulse irradiation scheme for high CE, and reduced ion debris using a carbon dioxide laser and a droplet or a punch-out target. Using our benchmarked numerical simulation code, we find a possibility to obtain CE up to 6–7%, which is more than twice that achieved to date. We discuss the reduction of ion energy within the two-pulse irradiation scheme. The mitigation of energetic ions by a magnetic field is also discussed, and we conclude that no serious instability occurs due to large ion gyroradius.</abstract><cop>United States</cop><doi>10.1063/1.2907154</doi></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2008-05, Vol.15 (5)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_21120403
source AIP Journals Complete; AIP Digital Archive
subjects CARBON DIOXIDE LASERS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DESIGN
DROPLETS
EFFICIENCY
EXTREME ULTRAVIOLET RADIATION
HYDRODYNAMICS
INSTABILITY
LASER-PRODUCED PLASMA
LIGHT SOURCES
MAGNETIC FIELDS
MIRRORS
PLASMA PRODUCTION
PULSED IRRADIATION
SEMICONDUCTOR DEVICES
SIMULATION
TAIL IONS
title Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20physics%20and%20radiation%20hydrodynamics%20in%20developing%20an%20extreme%20ultraviolet%20light%20source%20for%20lithography&rft.jtitle=Physics%20of%20plasmas&rft.au=Nishihara,%20Katsunobu&rft.date=2008-05-01&rft.volume=15&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/10.1063/1.2907154&rft_dat=%3Ccrossref_osti_%3E10_1063_1_2907154%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true