Aspects of the functional renormalisation group

We discuss structural aspects of the functional renormalisation group. Flows for a general class of correlation functions are derived, and it is shown how symmetry relations of the underlying theory are lifted to the regularised theory. A simple equation for the flow of these relations is provided....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2007-12, Vol.322 (12), p.2831-2915
1. Verfasser: Pawlowski, Jan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2915
container_issue 12
container_start_page 2831
container_title Annals of physics
container_volume 322
creator Pawlowski, Jan M.
description We discuss structural aspects of the functional renormalisation group. Flows for a general class of correlation functions are derived, and it is shown how symmetry relations of the underlying theory are lifted to the regularised theory. A simple equation for the flow of these relations is provided. The setting includes general flows in the presence of composite operators and their relation to standard flows, an important example being NPI quantities. We discuss optimisation and derive a functional optimisation criterion. Applications deal with the interrelation between functional flows and the quantum equations of motion, general Dyson–Schwinger equations. We discuss the combined use of these functional equations as well as outlining the construction of practical renormalisation schemes, also valid in the presence of composite operators. Furthermore, the formalism is used to derive various representations of modified symmetry relations in gauge theories, as well as to discuss gauge-invariant flows. We close with the construction and analysis of truncation schemes in view of practical optimisation.
doi_str_mv 10.1016/j.aop.2007.01.007
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21077666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491607000097</els_id><sourcerecordid>3711603161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-a14ac5f14f5f33215f8e2fc5ea8ded9aa629b8a8c44245da74fe4987c4b94f153</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHdF1625eTXF1TD4ggE3Cu5CJk2clpmmJq3gvzelLgTB1YHLdy4fB6FLwAVgEDdtoX1fEIzLAkOR4ggtAFcix5S_HaMFxpjmrAJxis5ibDEGYFwu0M0q9tYMMfMuG3Y2c2NnhsZ3ep8F2_lw0Psm6umSvQc_9ufoxOl9tBc_uUSv93cv68d88_zwtF5tcsOYGHINTBvugDnuKCXAnbTEGW61rG1daS1ItZVaJpowXuuSOcsqWRq2rZgDTpfoev7r49CoaJrBmp3xXZdkFQFclkKIRF3NVB_8x2jjoFo_hiQfFaFcclmyX6_-QiBkSQmhtEoUzJQJPsZgnepDc9DhSwFW08SqVWliNU2sMKgUqXM7d2xa4rOxYRK1nbF1EybP2jf_tL8B5PyCIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687322339</pqid></control><display><type>article</type><title>Aspects of the functional renormalisation group</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pawlowski, Jan M.</creator><creatorcontrib>Pawlowski, Jan M.</creatorcontrib><description>We discuss structural aspects of the functional renormalisation group. Flows for a general class of correlation functions are derived, and it is shown how symmetry relations of the underlying theory are lifted to the regularised theory. A simple equation for the flow of these relations is provided. The setting includes general flows in the presence of composite operators and their relation to standard flows, an important example being NPI quantities. We discuss optimisation and derive a functional optimisation criterion. Applications deal with the interrelation between functional flows and the quantum equations of motion, general Dyson–Schwinger equations. We discuss the combined use of these functional equations as well as outlining the construction of practical renormalisation schemes, also valid in the presence of composite operators. Furthermore, the formalism is used to derive various representations of modified symmetry relations in gauge theories, as well as to discuss gauge-invariant flows. We close with the construction and analysis of truncation schemes in view of practical optimisation.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2007.01.007</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>CORRELATION FUNCTIONS ; EQUATIONS OF MOTION ; Gauge field theories ; GAUGE INVARIANCE ; Mathematics ; OPTIMIZATION ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUANTUM FIELD THEORY ; Quantum theory ; Renormalisation ; Renormalisation group evolution of parameters ; Renormalisation group methods ; RENORMALIZATION ; SYMMETRY ; Theory</subject><ispartof>Annals of physics, 2007-12, Vol.322 (12), p.2831-2915</ispartof><rights>2007 Elsevier Inc.</rights><rights>Copyright © 2007 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-a14ac5f14f5f33215f8e2fc5ea8ded9aa629b8a8c44245da74fe4987c4b94f153</citedby><cites>FETCH-LOGICAL-c446t-a14ac5f14f5f33215f8e2fc5ea8ded9aa629b8a8c44245da74fe4987c4b94f153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003491607000097$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21077666$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pawlowski, Jan M.</creatorcontrib><title>Aspects of the functional renormalisation group</title><title>Annals of physics</title><description>We discuss structural aspects of the functional renormalisation group. Flows for a general class of correlation functions are derived, and it is shown how symmetry relations of the underlying theory are lifted to the regularised theory. A simple equation for the flow of these relations is provided. The setting includes general flows in the presence of composite operators and their relation to standard flows, an important example being NPI quantities. We discuss optimisation and derive a functional optimisation criterion. Applications deal with the interrelation between functional flows and the quantum equations of motion, general Dyson–Schwinger equations. We discuss the combined use of these functional equations as well as outlining the construction of practical renormalisation schemes, also valid in the presence of composite operators. Furthermore, the formalism is used to derive various representations of modified symmetry relations in gauge theories, as well as to discuss gauge-invariant flows. We close with the construction and analysis of truncation schemes in view of practical optimisation.</description><subject>CORRELATION FUNCTIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>Gauge field theories</subject><subject>GAUGE INVARIANCE</subject><subject>Mathematics</subject><subject>OPTIMIZATION</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUANTUM FIELD THEORY</subject><subject>Quantum theory</subject><subject>Renormalisation</subject><subject>Renormalisation group evolution of parameters</subject><subject>Renormalisation group methods</subject><subject>RENORMALIZATION</subject><subject>SYMMETRY</subject><subject>Theory</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHdF1625eTXF1TD4ggE3Cu5CJk2clpmmJq3gvzelLgTB1YHLdy4fB6FLwAVgEDdtoX1fEIzLAkOR4ggtAFcix5S_HaMFxpjmrAJxis5ibDEGYFwu0M0q9tYMMfMuG3Y2c2NnhsZ3ep8F2_lw0Psm6umSvQc_9ufoxOl9tBc_uUSv93cv68d88_zwtF5tcsOYGHINTBvugDnuKCXAnbTEGW61rG1daS1ItZVaJpowXuuSOcsqWRq2rZgDTpfoev7r49CoaJrBmp3xXZdkFQFclkKIRF3NVB_8x2jjoFo_hiQfFaFcclmyX6_-QiBkSQmhtEoUzJQJPsZgnepDc9DhSwFW08SqVWliNU2sMKgUqXM7d2xa4rOxYRK1nbF1EybP2jf_tL8B5PyCIA</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Pawlowski, Jan M.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20071201</creationdate><title>Aspects of the functional renormalisation group</title><author>Pawlowski, Jan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-a14ac5f14f5f33215f8e2fc5ea8ded9aa629b8a8c44245da74fe4987c4b94f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>CORRELATION FUNCTIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>Gauge field theories</topic><topic>GAUGE INVARIANCE</topic><topic>Mathematics</topic><topic>OPTIMIZATION</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUANTUM FIELD THEORY</topic><topic>Quantum theory</topic><topic>Renormalisation</topic><topic>Renormalisation group evolution of parameters</topic><topic>Renormalisation group methods</topic><topic>RENORMALIZATION</topic><topic>SYMMETRY</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pawlowski, Jan M.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pawlowski, Jan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aspects of the functional renormalisation group</atitle><jtitle>Annals of physics</jtitle><date>2007-12-01</date><risdate>2007</risdate><volume>322</volume><issue>12</issue><spage>2831</spage><epage>2915</epage><pages>2831-2915</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>We discuss structural aspects of the functional renormalisation group. Flows for a general class of correlation functions are derived, and it is shown how symmetry relations of the underlying theory are lifted to the regularised theory. A simple equation for the flow of these relations is provided. The setting includes general flows in the presence of composite operators and their relation to standard flows, an important example being NPI quantities. We discuss optimisation and derive a functional optimisation criterion. Applications deal with the interrelation between functional flows and the quantum equations of motion, general Dyson–Schwinger equations. We discuss the combined use of these functional equations as well as outlining the construction of practical renormalisation schemes, also valid in the presence of composite operators. Furthermore, the formalism is used to derive various representations of modified symmetry relations in gauge theories, as well as to discuss gauge-invariant flows. We close with the construction and analysis of truncation schemes in view of practical optimisation.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2007.01.007</doi><tpages>85</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2007-12, Vol.322 (12), p.2831-2915
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_21077666
source ScienceDirect Journals (5 years ago - present)
subjects CORRELATION FUNCTIONS
EQUATIONS OF MOTION
Gauge field theories
GAUGE INVARIANCE
Mathematics
OPTIMIZATION
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
QUANTUM FIELD THEORY
Quantum theory
Renormalisation
Renormalisation group evolution of parameters
Renormalisation group methods
RENORMALIZATION
SYMMETRY
Theory
title Aspects of the functional renormalisation group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aspects%20of%20the%20functional%20renormalisation%20group&rft.jtitle=Annals%20of%20physics&rft.au=Pawlowski,%20Jan%20M.&rft.date=2007-12-01&rft.volume=322&rft.issue=12&rft.spage=2831&rft.epage=2915&rft.pages=2831-2915&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2007.01.007&rft_dat=%3Cproquest_osti_%3E3711603161%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1687322339&rft_id=info:pmid/&rft_els_id=S0003491607000097&rfr_iscdi=true