The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy
A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integ...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2008-02, Vol.35 (2), p.602-607 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 607 |
---|---|
container_issue | 2 |
container_start_page | 602 |
container_title | Medical physics (Lancaster) |
container_volume | 35 |
creator | Kanematsu, Nobuyuki Yonai, Shunsuke Ishizaki, Azusa |
description | A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer. It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose deformation within the size of the pristine spread occurs for angled beams, which was within 3 mm for a single 150-MeV proton pencil beam of
30
°
incidence, and needs to be assessed against the clinical requirements and tolerances in practical situations. |
doi_str_mv | 10.1118/1.2829878 |
format | Article |
fullrecord | <record><control><sourceid>wiley_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21036160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP9878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5308-9dd3067c52172796712b2c01b877241f34b28d8ad5fa405641d126179c32a9da3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMobk4f_AIS8E2o5iZtkj7K8B9M9GE-lzRJ14yuLWk36be3XSf6ok_nwvndc7kHoUsgtwAg7-CWShpLIY_QlIaCBSEl8TGaEhKHAQ1JNEFnTbMmhHAWkVM0Ackk4xKmaL3MLV55ZwJTNTZoam-VceUKq2JVedfmG5xVHg8mNq5pvUu3ratKrFWht4Xaz67EuVW7Dutc-ZU1uFa-dbqw2PdhVZtbr-ruHJ1kqmjsxUFn6OPxYTl_DhZvTy_z-0WgI0ZkEBvDCBc6oiCoiLkAmlJNIJVC0BAyFqZUGqlMlKn-NR6CAcpBxJpRFRvFZuh6zK2a1iWNdq3Vua7K0uo2oUAYB0566mqk6m26sSapvdso3yXf1fRAMAKfrrDdj0-SofMEkkPnyev7ID1_M_LDxX0vf-_8B-8q_yu8Nhn7As0_jpw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Kanematsu, Nobuyuki ; Yonai, Shunsuke ; Ishizaki, Azusa</creator><creatorcontrib>Kanematsu, Nobuyuki ; Yonai, Shunsuke ; Ishizaki, Azusa</creatorcontrib><description>A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer. It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose deformation within the size of the pristine spread occurs for angled beams, which was within 3 mm for a single 150-MeV proton pencil beam of
30
°
incidence, and needs to be assessed against the clinical requirements and tolerances in practical situations.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.2829878</identifier><identifier>PMID: 18383681</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>ALGORITHMS ; BEAMS ; Body Burden ; cancer ; CARBON IONS ; CARCINOMAS ; DEFORMATION ; dose calculation ; DOSIMETRY ; Dosimetry/exposure assessment ; ENERGY TRANSFER ; Heavy charged particle therapy ; Heavy ion beams ; HEAVY IONS ; Heavy Ions - therapeutic use ; heavy‐ion radiotherapy ; Humans ; Intense charged particle beams ; Medical imaging ; Medical treatment planning ; pencil‐beam algorithm ; PROSTATE ; proton radiotherapy ; Protons ; RADIATION DOSE DISTRIBUTIONS ; RADIATION DOSES ; radiation therapy ; RADIOLOGY AND NUCLEAR MEDICINE ; Radiometry - methods ; RADIOTHERAPY ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, High-Energy - methods ; Relative Biological Effectiveness ; Reproducibility of Results ; Scattering, Radiation ; Sensitivity and Specificity ; Total energy calculations</subject><ispartof>Medical physics (Lancaster), 2008-02, Vol.35 (2), p.602-607</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2008 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5308-9dd3067c52172796712b2c01b877241f34b28d8ad5fa405641d126179c32a9da3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.2829878$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.2829878$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18383681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21036160$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanematsu, Nobuyuki</creatorcontrib><creatorcontrib>Yonai, Shunsuke</creatorcontrib><creatorcontrib>Ishizaki, Azusa</creatorcontrib><title>The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer. It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose deformation within the size of the pristine spread occurs for angled beams, which was within 3 mm for a single 150-MeV proton pencil beam of
30
°
incidence, and needs to be assessed against the clinical requirements and tolerances in practical situations.</description><subject>ALGORITHMS</subject><subject>BEAMS</subject><subject>Body Burden</subject><subject>cancer</subject><subject>CARBON IONS</subject><subject>CARCINOMAS</subject><subject>DEFORMATION</subject><subject>dose calculation</subject><subject>DOSIMETRY</subject><subject>Dosimetry/exposure assessment</subject><subject>ENERGY TRANSFER</subject><subject>Heavy charged particle therapy</subject><subject>Heavy ion beams</subject><subject>HEAVY IONS</subject><subject>Heavy Ions - therapeutic use</subject><subject>heavy‐ion radiotherapy</subject><subject>Humans</subject><subject>Intense charged particle beams</subject><subject>Medical imaging</subject><subject>Medical treatment planning</subject><subject>pencil‐beam algorithm</subject><subject>PROSTATE</subject><subject>proton radiotherapy</subject><subject>Protons</subject><subject>RADIATION DOSE DISTRIBUTIONS</subject><subject>RADIATION DOSES</subject><subject>radiation therapy</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radiometry - methods</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, High-Energy - methods</subject><subject>Relative Biological Effectiveness</subject><subject>Reproducibility of Results</subject><subject>Scattering, Radiation</subject><subject>Sensitivity and Specificity</subject><subject>Total energy calculations</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF9LwzAUxYMobk4f_AIS8E2o5iZtkj7K8B9M9GE-lzRJ14yuLWk36be3XSf6ok_nwvndc7kHoUsgtwAg7-CWShpLIY_QlIaCBSEl8TGaEhKHAQ1JNEFnTbMmhHAWkVM0Ackk4xKmaL3MLV55ZwJTNTZoam-VceUKq2JVedfmG5xVHg8mNq5pvUu3ratKrFWht4Xaz67EuVW7Dutc-ZU1uFa-dbqw2PdhVZtbr-ruHJ1kqmjsxUFn6OPxYTl_DhZvTy_z-0WgI0ZkEBvDCBc6oiCoiLkAmlJNIJVC0BAyFqZUGqlMlKn-NR6CAcpBxJpRFRvFZuh6zK2a1iWNdq3Vua7K0uo2oUAYB0566mqk6m26sSapvdso3yXf1fRAMAKfrrDdj0-SofMEkkPnyev7ID1_M_LDxX0vf-_8B-8q_yu8Nhn7As0_jpw</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Kanematsu, Nobuyuki</creator><creator>Yonai, Shunsuke</creator><creator>Ishizaki, Azusa</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>OTOTI</scope></search><sort><creationdate>200802</creationdate><title>The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy</title><author>Kanematsu, Nobuyuki ; Yonai, Shunsuke ; Ishizaki, Azusa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5308-9dd3067c52172796712b2c01b877241f34b28d8ad5fa405641d126179c32a9da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>ALGORITHMS</topic><topic>BEAMS</topic><topic>Body Burden</topic><topic>cancer</topic><topic>CARBON IONS</topic><topic>CARCINOMAS</topic><topic>DEFORMATION</topic><topic>dose calculation</topic><topic>DOSIMETRY</topic><topic>Dosimetry/exposure assessment</topic><topic>ENERGY TRANSFER</topic><topic>Heavy charged particle therapy</topic><topic>Heavy ion beams</topic><topic>HEAVY IONS</topic><topic>Heavy Ions - therapeutic use</topic><topic>heavy‐ion radiotherapy</topic><topic>Humans</topic><topic>Intense charged particle beams</topic><topic>Medical imaging</topic><topic>Medical treatment planning</topic><topic>pencil‐beam algorithm</topic><topic>PROSTATE</topic><topic>proton radiotherapy</topic><topic>Protons</topic><topic>RADIATION DOSE DISTRIBUTIONS</topic><topic>RADIATION DOSES</topic><topic>radiation therapy</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radiometry - methods</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, High-Energy - methods</topic><topic>Relative Biological Effectiveness</topic><topic>Reproducibility of Results</topic><topic>Scattering, Radiation</topic><topic>Sensitivity and Specificity</topic><topic>Total energy calculations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanematsu, Nobuyuki</creatorcontrib><creatorcontrib>Yonai, Shunsuke</creatorcontrib><creatorcontrib>Ishizaki, Azusa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanematsu, Nobuyuki</au><au>Yonai, Shunsuke</au><au>Ishizaki, Azusa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2008-02</date><risdate>2008</risdate><volume>35</volume><issue>2</issue><spage>602</spage><epage>607</epage><pages>602-607</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer. It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose deformation within the size of the pristine spread occurs for angled beams, which was within 3 mm for a single 150-MeV proton pencil beam of
30
°
incidence, and needs to be assessed against the clinical requirements and tolerances in practical situations.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>18383681</pmid><doi>10.1118/1.2829878</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2008-02, Vol.35 (2), p.602-607 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_osti_scitechconnect_21036160 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | ALGORITHMS BEAMS Body Burden cancer CARBON IONS CARCINOMAS DEFORMATION dose calculation DOSIMETRY Dosimetry/exposure assessment ENERGY TRANSFER Heavy charged particle therapy Heavy ion beams HEAVY IONS Heavy Ions - therapeutic use heavy‐ion radiotherapy Humans Intense charged particle beams Medical imaging Medical treatment planning pencil‐beam algorithm PROSTATE proton radiotherapy Protons RADIATION DOSE DISTRIBUTIONS RADIATION DOSES radiation therapy RADIOLOGY AND NUCLEAR MEDICINE Radiometry - methods RADIOTHERAPY Radiotherapy Dosage Radiotherapy Planning, Computer-Assisted - methods Radiotherapy, High-Energy - methods Relative Biological Effectiveness Reproducibility of Results Scattering, Radiation Sensitivity and Specificity Total energy calculations |
title | The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20grid-dose-spreading%20algorithm%20for%20dose%20distribution%20calculation%20in%20heavy%20charged%20particle%20radiotherapy&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Kanematsu,%20Nobuyuki&rft.date=2008-02&rft.volume=35&rft.issue=2&rft.spage=602&rft.epage=607&rft.pages=602-607&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.2829878&rft_dat=%3Cwiley_osti_%3EMP9878%3C/wiley_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18383681&rfr_iscdi=true |