The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy

A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2008-02, Vol.35 (2), p.602-607
Hauptverfasser: Kanematsu, Nobuyuki, Yonai, Shunsuke, Ishizaki, Azusa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 607
container_issue 2
container_start_page 602
container_title Medical physics (Lancaster)
container_volume 35
creator Kanematsu, Nobuyuki
Yonai, Shunsuke
Ishizaki, Azusa
description A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer. It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose deformation within the size of the pristine spread occurs for angled beams, which was within 3 mm for a single 150-MeV proton pencil beam of 30 ° incidence, and needs to be assessed against the clinical requirements and tolerances in practical situations.
doi_str_mv 10.1118/1.2829878
format Article
fullrecord <record><control><sourceid>wiley_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21036160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP9878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5308-9dd3067c52172796712b2c01b877241f34b28d8ad5fa405641d126179c32a9da3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMobk4f_AIS8E2o5iZtkj7K8B9M9GE-lzRJ14yuLWk36be3XSf6ok_nwvndc7kHoUsgtwAg7-CWShpLIY_QlIaCBSEl8TGaEhKHAQ1JNEFnTbMmhHAWkVM0Ackk4xKmaL3MLV55ZwJTNTZoam-VceUKq2JVedfmG5xVHg8mNq5pvUu3ratKrFWht4Xaz67EuVW7Dutc-ZU1uFa-dbqw2PdhVZtbr-ruHJ1kqmjsxUFn6OPxYTl_DhZvTy_z-0WgI0ZkEBvDCBc6oiCoiLkAmlJNIJVC0BAyFqZUGqlMlKn-NR6CAcpBxJpRFRvFZuh6zK2a1iWNdq3Vua7K0uo2oUAYB0566mqk6m26sSapvdso3yXf1fRAMAKfrrDdj0-SofMEkkPnyev7ID1_M_LDxX0vf-_8B-8q_yu8Nhn7As0_jpw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Kanematsu, Nobuyuki ; Yonai, Shunsuke ; Ishizaki, Azusa</creator><creatorcontrib>Kanematsu, Nobuyuki ; Yonai, Shunsuke ; Ishizaki, Azusa</creatorcontrib><description>A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer. It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose deformation within the size of the pristine spread occurs for angled beams, which was within 3 mm for a single 150-MeV proton pencil beam of 30 ° incidence, and needs to be assessed against the clinical requirements and tolerances in practical situations.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.2829878</identifier><identifier>PMID: 18383681</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>ALGORITHMS ; BEAMS ; Body Burden ; cancer ; CARBON IONS ; CARCINOMAS ; DEFORMATION ; dose calculation ; DOSIMETRY ; Dosimetry/exposure assessment ; ENERGY TRANSFER ; Heavy charged particle therapy ; Heavy ion beams ; HEAVY IONS ; Heavy Ions - therapeutic use ; heavy‐ion radiotherapy ; Humans ; Intense charged particle beams ; Medical imaging ; Medical treatment planning ; pencil‐beam algorithm ; PROSTATE ; proton radiotherapy ; Protons ; RADIATION DOSE DISTRIBUTIONS ; RADIATION DOSES ; radiation therapy ; RADIOLOGY AND NUCLEAR MEDICINE ; Radiometry - methods ; RADIOTHERAPY ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, High-Energy - methods ; Relative Biological Effectiveness ; Reproducibility of Results ; Scattering, Radiation ; Sensitivity and Specificity ; Total energy calculations</subject><ispartof>Medical physics (Lancaster), 2008-02, Vol.35 (2), p.602-607</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2008 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5308-9dd3067c52172796712b2c01b877241f34b28d8ad5fa405641d126179c32a9da3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.2829878$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.2829878$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18383681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21036160$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanematsu, Nobuyuki</creatorcontrib><creatorcontrib>Yonai, Shunsuke</creatorcontrib><creatorcontrib>Ishizaki, Azusa</creatorcontrib><title>The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer. It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose deformation within the size of the pristine spread occurs for angled beams, which was within 3 mm for a single 150-MeV proton pencil beam of 30 ° incidence, and needs to be assessed against the clinical requirements and tolerances in practical situations.</description><subject>ALGORITHMS</subject><subject>BEAMS</subject><subject>Body Burden</subject><subject>cancer</subject><subject>CARBON IONS</subject><subject>CARCINOMAS</subject><subject>DEFORMATION</subject><subject>dose calculation</subject><subject>DOSIMETRY</subject><subject>Dosimetry/exposure assessment</subject><subject>ENERGY TRANSFER</subject><subject>Heavy charged particle therapy</subject><subject>Heavy ion beams</subject><subject>HEAVY IONS</subject><subject>Heavy Ions - therapeutic use</subject><subject>heavy‐ion radiotherapy</subject><subject>Humans</subject><subject>Intense charged particle beams</subject><subject>Medical imaging</subject><subject>Medical treatment planning</subject><subject>pencil‐beam algorithm</subject><subject>PROSTATE</subject><subject>proton radiotherapy</subject><subject>Protons</subject><subject>RADIATION DOSE DISTRIBUTIONS</subject><subject>RADIATION DOSES</subject><subject>radiation therapy</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radiometry - methods</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, High-Energy - methods</subject><subject>Relative Biological Effectiveness</subject><subject>Reproducibility of Results</subject><subject>Scattering, Radiation</subject><subject>Sensitivity and Specificity</subject><subject>Total energy calculations</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF9LwzAUxYMobk4f_AIS8E2o5iZtkj7K8B9M9GE-lzRJ14yuLWk36be3XSf6ok_nwvndc7kHoUsgtwAg7-CWShpLIY_QlIaCBSEl8TGaEhKHAQ1JNEFnTbMmhHAWkVM0Ackk4xKmaL3MLV55ZwJTNTZoam-VceUKq2JVedfmG5xVHg8mNq5pvUu3ratKrFWht4Xaz67EuVW7Dutc-ZU1uFa-dbqw2PdhVZtbr-ruHJ1kqmjsxUFn6OPxYTl_DhZvTy_z-0WgI0ZkEBvDCBc6oiCoiLkAmlJNIJVC0BAyFqZUGqlMlKn-NR6CAcpBxJpRFRvFZuh6zK2a1iWNdq3Vua7K0uo2oUAYB0566mqk6m26sSapvdso3yXf1fRAMAKfrrDdj0-SofMEkkPnyev7ID1_M_LDxX0vf-_8B-8q_yu8Nhn7As0_jpw</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Kanematsu, Nobuyuki</creator><creator>Yonai, Shunsuke</creator><creator>Ishizaki, Azusa</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>OTOTI</scope></search><sort><creationdate>200802</creationdate><title>The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy</title><author>Kanematsu, Nobuyuki ; Yonai, Shunsuke ; Ishizaki, Azusa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5308-9dd3067c52172796712b2c01b877241f34b28d8ad5fa405641d126179c32a9da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>ALGORITHMS</topic><topic>BEAMS</topic><topic>Body Burden</topic><topic>cancer</topic><topic>CARBON IONS</topic><topic>CARCINOMAS</topic><topic>DEFORMATION</topic><topic>dose calculation</topic><topic>DOSIMETRY</topic><topic>Dosimetry/exposure assessment</topic><topic>ENERGY TRANSFER</topic><topic>Heavy charged particle therapy</topic><topic>Heavy ion beams</topic><topic>HEAVY IONS</topic><topic>Heavy Ions - therapeutic use</topic><topic>heavy‐ion radiotherapy</topic><topic>Humans</topic><topic>Intense charged particle beams</topic><topic>Medical imaging</topic><topic>Medical treatment planning</topic><topic>pencil‐beam algorithm</topic><topic>PROSTATE</topic><topic>proton radiotherapy</topic><topic>Protons</topic><topic>RADIATION DOSE DISTRIBUTIONS</topic><topic>RADIATION DOSES</topic><topic>radiation therapy</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radiometry - methods</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, High-Energy - methods</topic><topic>Relative Biological Effectiveness</topic><topic>Reproducibility of Results</topic><topic>Scattering, Radiation</topic><topic>Sensitivity and Specificity</topic><topic>Total energy calculations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanematsu, Nobuyuki</creatorcontrib><creatorcontrib>Yonai, Shunsuke</creatorcontrib><creatorcontrib>Ishizaki, Azusa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanematsu, Nobuyuki</au><au>Yonai, Shunsuke</au><au>Ishizaki, Azusa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2008-02</date><risdate>2008</risdate><volume>35</volume><issue>2</issue><spage>602</spage><epage>607</epage><pages>602-607</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer. It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose deformation within the size of the pristine spread occurs for angled beams, which was within 3 mm for a single 150-MeV proton pencil beam of 30 ° incidence, and needs to be assessed against the clinical requirements and tolerances in practical situations.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>18383681</pmid><doi>10.1118/1.2829878</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2008-02, Vol.35 (2), p.602-607
issn 0094-2405
2473-4209
language eng
recordid cdi_osti_scitechconnect_21036160
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects ALGORITHMS
BEAMS
Body Burden
cancer
CARBON IONS
CARCINOMAS
DEFORMATION
dose calculation
DOSIMETRY
Dosimetry/exposure assessment
ENERGY TRANSFER
Heavy charged particle therapy
Heavy ion beams
HEAVY IONS
Heavy Ions - therapeutic use
heavy‐ion radiotherapy
Humans
Intense charged particle beams
Medical imaging
Medical treatment planning
pencil‐beam algorithm
PROSTATE
proton radiotherapy
Protons
RADIATION DOSE DISTRIBUTIONS
RADIATION DOSES
radiation therapy
RADIOLOGY AND NUCLEAR MEDICINE
Radiometry - methods
RADIOTHERAPY
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy, High-Energy - methods
Relative Biological Effectiveness
Reproducibility of Results
Scattering, Radiation
Sensitivity and Specificity
Total energy calculations
title The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20grid-dose-spreading%20algorithm%20for%20dose%20distribution%20calculation%20in%20heavy%20charged%20particle%20radiotherapy&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Kanematsu,%20Nobuyuki&rft.date=2008-02&rft.volume=35&rft.issue=2&rft.spage=602&rft.epage=607&rft.pages=602-607&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.2829878&rft_dat=%3Cwiley_osti_%3EMP9878%3C/wiley_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18383681&rfr_iscdi=true