Multiple-event probability in general-relativistic quantum mechanics

We discuss the definition of quantum probability in the context of "timeless" general--relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multi-event probability. In conventional quantum mechanics this can be obtained by means of the ``wave f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2007-04, Vol.75 (8), Article 084033
Hauptverfasser: Hellmann, Frank, Mondragon, Mauricio, Perez, Alejandro, Rovelli, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. D
container_volume 75
creator Hellmann, Frank
Mondragon, Mauricio
Perez, Alejandro
Rovelli, Carlo
description We discuss the definition of quantum probability in the context of "timeless" general--relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multi-event probability. In conventional quantum mechanics this can be obtained by means of the ``wave function collapse" algorithm. We first point out certain difficulties of some natural definitions of multi-event probability, including the conditional probability widely considered in the literature. We then observe that multi-event probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum classical boundary, one can always trade a sequence of non-commuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the "wave function collapse" algorithm can nevertheless be recovered. The discussion bears also on the nature of the quantum collapse.
doi_str_mv 10.1103/PhysRevD.75.084033
format Article
fullrecord <record><control><sourceid>hal_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21020402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00166833v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-387293764094ef8186dd075dea242e105ec4f113c78f9c475b3f53af4e3c29553</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsH78AU8BTx5SZ3d2s8mxtGqFiiJ6XrbbiV1Jk5rdBvrvTUn1NMPwvMPLw9gNhzHngPdv6314p2421moMuQTEEzbiSkEqMMtPj7suivycXYTwDYAi03rEZi-7KvptRSl1VMdk2zZLu_SVj_vE18kX1dTaKm2pstF3PkTvkp-dreNuk2zIrW3tXbhiZ6WtAl0f5yX7fHz4mM7TxevT83SySB0qjCnmWhSoMwmFpDLnebZagVYrskIK4qDIyZJzdDovCye1WmKp0JaS0IlCKbxkt8Pfpu9hgvOxb-CauiYXjeAgQILoqbuBWtvKbFu_se3eNNab-WRhDjcAnmU5Ysd7Vgysa5sQWir_AxzMwaz5M2u0MoNZ_AVFJWz1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiple-event probability in general-relativistic quantum mechanics</title><source>American Physical Society Journals</source><creator>Hellmann, Frank ; Mondragon, Mauricio ; Perez, Alejandro ; Rovelli, Carlo</creator><creatorcontrib>Hellmann, Frank ; Mondragon, Mauricio ; Perez, Alejandro ; Rovelli, Carlo</creatorcontrib><description>We discuss the definition of quantum probability in the context of "timeless" general--relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multi-event probability. In conventional quantum mechanics this can be obtained by means of the ``wave function collapse" algorithm. We first point out certain difficulties of some natural definitions of multi-event probability, including the conditional probability widely considered in the literature. We then observe that multi-event probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum classical boundary, one can always trade a sequence of non-commuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the "wave function collapse" algorithm can nevertheless be recovered. The discussion bears also on the nature of the quantum collapse.</description><identifier>ISSN: 1550-7998</identifier><identifier>ISSN: 2470-0010</identifier><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1550-2368</identifier><identifier>EISSN: 2470-0029</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.75.084033</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>ALGORITHMS ; COSMOLOGY ; General Relativity and Quantum Cosmology ; GENERAL RELATIVITY THEORY ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; PROBABILITY ; QUANTUM FIELD THEORY ; QUANTUM MECHANICS ; RELATIVISTIC RANGE ; WAVE FUNCTIONS</subject><ispartof>Physical review. D, 2007-04, Vol.75 (8), Article 084033</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-387293764094ef8186dd075dea242e105ec4f113c78f9c475b3f53af4e3c29553</citedby><cites>FETCH-LOGICAL-c353t-387293764094ef8186dd075dea242e105ec4f113c78f9c475b3f53af4e3c29553</cites><orcidid>0000-0003-1724-9737 ; 0000-0002-9460-140X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00166833$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21020402$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hellmann, Frank</creatorcontrib><creatorcontrib>Mondragon, Mauricio</creatorcontrib><creatorcontrib>Perez, Alejandro</creatorcontrib><creatorcontrib>Rovelli, Carlo</creatorcontrib><title>Multiple-event probability in general-relativistic quantum mechanics</title><title>Physical review. D</title><description>We discuss the definition of quantum probability in the context of "timeless" general--relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multi-event probability. In conventional quantum mechanics this can be obtained by means of the ``wave function collapse" algorithm. We first point out certain difficulties of some natural definitions of multi-event probability, including the conditional probability widely considered in the literature. We then observe that multi-event probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum classical boundary, one can always trade a sequence of non-commuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the "wave function collapse" algorithm can nevertheless be recovered. The discussion bears also on the nature of the quantum collapse.</description><subject>ALGORITHMS</subject><subject>COSMOLOGY</subject><subject>General Relativity and Quantum Cosmology</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>PROBABILITY</subject><subject>QUANTUM FIELD THEORY</subject><subject>QUANTUM MECHANICS</subject><subject>RELATIVISTIC RANGE</subject><subject>WAVE FUNCTIONS</subject><issn>1550-7998</issn><issn>2470-0010</issn><issn>0556-2821</issn><issn>1550-2368</issn><issn>2470-0029</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsH78AU8BTx5SZ3d2s8mxtGqFiiJ6XrbbiV1Jk5rdBvrvTUn1NMPwvMPLw9gNhzHngPdv6314p2421moMuQTEEzbiSkEqMMtPj7suivycXYTwDYAi03rEZi-7KvptRSl1VMdk2zZLu_SVj_vE18kX1dTaKm2pstF3PkTvkp-dreNuk2zIrW3tXbhiZ6WtAl0f5yX7fHz4mM7TxevT83SySB0qjCnmWhSoMwmFpDLnebZagVYrskIK4qDIyZJzdDovCye1WmKp0JaS0IlCKbxkt8Pfpu9hgvOxb-CauiYXjeAgQILoqbuBWtvKbFu_se3eNNab-WRhDjcAnmU5Ysd7Vgysa5sQWir_AxzMwaz5M2u0MoNZ_AVFJWz1</recordid><startdate>20070415</startdate><enddate>20070415</enddate><creator>Hellmann, Frank</creator><creator>Mondragon, Mauricio</creator><creator>Perez, Alejandro</creator><creator>Rovelli, Carlo</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1724-9737</orcidid><orcidid>https://orcid.org/0000-0002-9460-140X</orcidid></search><sort><creationdate>20070415</creationdate><title>Multiple-event probability in general-relativistic quantum mechanics</title><author>Hellmann, Frank ; Mondragon, Mauricio ; Perez, Alejandro ; Rovelli, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-387293764094ef8186dd075dea242e105ec4f113c78f9c475b3f53af4e3c29553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>ALGORITHMS</topic><topic>COSMOLOGY</topic><topic>General Relativity and Quantum Cosmology</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>PROBABILITY</topic><topic>QUANTUM FIELD THEORY</topic><topic>QUANTUM MECHANICS</topic><topic>RELATIVISTIC RANGE</topic><topic>WAVE FUNCTIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hellmann, Frank</creatorcontrib><creatorcontrib>Mondragon, Mauricio</creatorcontrib><creatorcontrib>Perez, Alejandro</creatorcontrib><creatorcontrib>Rovelli, Carlo</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hellmann, Frank</au><au>Mondragon, Mauricio</au><au>Perez, Alejandro</au><au>Rovelli, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-event probability in general-relativistic quantum mechanics</atitle><jtitle>Physical review. D</jtitle><date>2007-04-15</date><risdate>2007</risdate><volume>75</volume><issue>8</issue><artnum>084033</artnum><issn>1550-7998</issn><issn>2470-0010</issn><issn>0556-2821</issn><eissn>1550-2368</eissn><eissn>2470-0029</eissn><eissn>1089-4918</eissn><abstract>We discuss the definition of quantum probability in the context of "timeless" general--relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multi-event probability. In conventional quantum mechanics this can be obtained by means of the ``wave function collapse" algorithm. We first point out certain difficulties of some natural definitions of multi-event probability, including the conditional probability widely considered in the literature. We then observe that multi-event probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum classical boundary, one can always trade a sequence of non-commuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the "wave function collapse" algorithm can nevertheless be recovered. The discussion bears also on the nature of the quantum collapse.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.75.084033</doi><orcidid>https://orcid.org/0000-0003-1724-9737</orcidid><orcidid>https://orcid.org/0000-0002-9460-140X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-7998
ispartof Physical review. D, 2007-04, Vol.75 (8), Article 084033
issn 1550-7998
2470-0010
0556-2821
1550-2368
2470-0029
1089-4918
language eng
recordid cdi_osti_scitechconnect_21020402
source American Physical Society Journals
subjects ALGORITHMS
COSMOLOGY
General Relativity and Quantum Cosmology
GENERAL RELATIVITY THEORY
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
PROBABILITY
QUANTUM FIELD THEORY
QUANTUM MECHANICS
RELATIVISTIC RANGE
WAVE FUNCTIONS
title Multiple-event probability in general-relativistic quantum mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-event%20probability%20in%20general-relativistic%20quantum%20mechanics&rft.jtitle=Physical%20review.%20D&rft.au=Hellmann,%20Frank&rft.date=2007-04-15&rft.volume=75&rft.issue=8&rft.artnum=084033&rft.issn=1550-7998&rft.eissn=1550-2368&rft_id=info:doi/10.1103/PhysRevD.75.084033&rft_dat=%3Chal_osti_%3Eoai_HAL_hal_00166833v1%3C/hal_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true