Foundations of nonlinear gyrokinetic theory
Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic theory are based on three pillars: (i) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian wit...
Gespeichert in:
Veröffentlicht in: | Reviews of modern physics 2007-04, Vol.79 (2), p.421-468 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 468 |
---|---|
container_issue | 2 |
container_start_page | 421 |
container_title | Reviews of modern physics |
container_volume | 79 |
creator | Brizard, A. J. Hahm, T. S. |
description | Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic theory are based on three pillars: (i) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian with quadratic low-frequency ponderomotivelike terms, (ii) a set of gyrokinetic Maxwell (Poisson-Ampere) equations written in terms of the gyrocenter Vlasov distribution that contain low-frequency polarization (Poisson) and magnetization (Ampere) terms, and (iii) an exact energy conservation law for the gyrokinetic Vlasov-Maxwell equations that includes all the relevant linear and nonlinear coupling terms. The foundations of nonlinear gyrokinetic theory are reviewed with an emphasis on rigorous application of Lagrangian and Hamiltonian Lie-transform perturbation methods in the variational derivation of nonlinear gyrokinetic Vlasov-Maxwell equations. The physical motivations and applications of the nonlinear gyrokinetic equations that describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetized plasmas with arbitrary magnetic geometry are discussed. |
doi_str_mv | 10.1103/RevModPhys.79.421 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21013706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_RevModPhys_79_421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-f87bc1b9ce06751ec4545d5cd8da078c05154e8162ed65dceaf5b673011d8143</originalsourceid><addsrcrecordid>eNpFkE1LxDAURYMoWEd_gLuCS-n43qT56FIGZxRGFJl96LyktjomkkSh_97KCK7uvXC4i8PYJcIcEfjNi_t-DPa5H9NcNfN6gUesQMGbCpSQx6wA4HUltcRTdpbSG0wbhCrY9Sp8edvmIfhUhq70we8H79pYvo4xvE81D1Tm3oU4nrOTrt0nd_GXM7Zd3W2X99Xmaf2wvN1UxLXKVafVjnDXkAOpBDqqRS2sIKttC0oTCBS10ygXzkphybWd2EnFAdFqrPmMXR1uQ8qDSTRkRz0F7x1ls0BArkBOFB4oiiGl6DrzGYePNo4GwfwqMf9KjGrMpIT_AOCgVp8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Foundations of nonlinear gyrokinetic theory</title><source>American Physical Society Journals</source><creator>Brizard, A. J. ; Hahm, T. S.</creator><creatorcontrib>Brizard, A. J. ; Hahm, T. S.</creatorcontrib><description>Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic theory are based on three pillars: (i) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian with quadratic low-frequency ponderomotivelike terms, (ii) a set of gyrokinetic Maxwell (Poisson-Ampere) equations written in terms of the gyrocenter Vlasov distribution that contain low-frequency polarization (Poisson) and magnetization (Ampere) terms, and (iii) an exact energy conservation law for the gyrokinetic Vlasov-Maxwell equations that includes all the relevant linear and nonlinear coupling terms. The foundations of nonlinear gyrokinetic theory are reviewed with an emphasis on rigorous application of Lagrangian and Hamiltonian Lie-transform perturbation methods in the variational derivation of nonlinear gyrokinetic Vlasov-Maxwell equations. The physical motivations and applications of the nonlinear gyrokinetic equations that describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetized plasmas with arbitrary magnetic geometry are discussed.</description><identifier>ISSN: 0034-6861</identifier><identifier>EISSN: 1539-0756</identifier><identifier>DOI: 10.1103/RevModPhys.79.421</identifier><language>eng</language><publisher>United States</publisher><subject>BOLTZMANN-VLASOV EQUATION ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; ENERGY CONSERVATION ; EVOLUTION ; HAMILTONIANS ; LAGRANGIAN FUNCTION ; LIE GROUPS ; MAGNETIZATION ; MAGNETOHYDRODYNAMICS ; NONLINEAR PROBLEMS ; PERTURBATION THEORY ; PLASMA ; POLARIZATION ; TURBULENCE ; VARIATIONAL METHODS</subject><ispartof>Reviews of modern physics, 2007-04, Vol.79 (2), p.421-468</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-f87bc1b9ce06751ec4545d5cd8da078c05154e8162ed65dceaf5b673011d8143</citedby><cites>FETCH-LOGICAL-c387t-f87bc1b9ce06751ec4545d5cd8da078c05154e8162ed65dceaf5b673011d8143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21013706$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brizard, A. J.</creatorcontrib><creatorcontrib>Hahm, T. S.</creatorcontrib><title>Foundations of nonlinear gyrokinetic theory</title><title>Reviews of modern physics</title><description>Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic theory are based on three pillars: (i) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian with quadratic low-frequency ponderomotivelike terms, (ii) a set of gyrokinetic Maxwell (Poisson-Ampere) equations written in terms of the gyrocenter Vlasov distribution that contain low-frequency polarization (Poisson) and magnetization (Ampere) terms, and (iii) an exact energy conservation law for the gyrokinetic Vlasov-Maxwell equations that includes all the relevant linear and nonlinear coupling terms. The foundations of nonlinear gyrokinetic theory are reviewed with an emphasis on rigorous application of Lagrangian and Hamiltonian Lie-transform perturbation methods in the variational derivation of nonlinear gyrokinetic Vlasov-Maxwell equations. The physical motivations and applications of the nonlinear gyrokinetic equations that describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetized plasmas with arbitrary magnetic geometry are discussed.</description><subject>BOLTZMANN-VLASOV EQUATION</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>ENERGY CONSERVATION</subject><subject>EVOLUTION</subject><subject>HAMILTONIANS</subject><subject>LAGRANGIAN FUNCTION</subject><subject>LIE GROUPS</subject><subject>MAGNETIZATION</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>NONLINEAR PROBLEMS</subject><subject>PERTURBATION THEORY</subject><subject>PLASMA</subject><subject>POLARIZATION</subject><subject>TURBULENCE</subject><subject>VARIATIONAL METHODS</subject><issn>0034-6861</issn><issn>1539-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAURYMoWEd_gLuCS-n43qT56FIGZxRGFJl96LyktjomkkSh_97KCK7uvXC4i8PYJcIcEfjNi_t-DPa5H9NcNfN6gUesQMGbCpSQx6wA4HUltcRTdpbSG0wbhCrY9Sp8edvmIfhUhq70we8H79pYvo4xvE81D1Tm3oU4nrOTrt0nd_GXM7Zd3W2X99Xmaf2wvN1UxLXKVafVjnDXkAOpBDqqRS2sIKttC0oTCBS10ygXzkphybWd2EnFAdFqrPmMXR1uQ8qDSTRkRz0F7x1ls0BArkBOFB4oiiGl6DrzGYePNo4GwfwqMf9KjGrMpIT_AOCgVp8</recordid><startdate>20070402</startdate><enddate>20070402</enddate><creator>Brizard, A. J.</creator><creator>Hahm, T. S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20070402</creationdate><title>Foundations of nonlinear gyrokinetic theory</title><author>Brizard, A. J. ; Hahm, T. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-f87bc1b9ce06751ec4545d5cd8da078c05154e8162ed65dceaf5b673011d8143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>BOLTZMANN-VLASOV EQUATION</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>ENERGY CONSERVATION</topic><topic>EVOLUTION</topic><topic>HAMILTONIANS</topic><topic>LAGRANGIAN FUNCTION</topic><topic>LIE GROUPS</topic><topic>MAGNETIZATION</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>NONLINEAR PROBLEMS</topic><topic>PERTURBATION THEORY</topic><topic>PLASMA</topic><topic>POLARIZATION</topic><topic>TURBULENCE</topic><topic>VARIATIONAL METHODS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brizard, A. J.</creatorcontrib><creatorcontrib>Hahm, T. S.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Reviews of modern physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brizard, A. J.</au><au>Hahm, T. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foundations of nonlinear gyrokinetic theory</atitle><jtitle>Reviews of modern physics</jtitle><date>2007-04-02</date><risdate>2007</risdate><volume>79</volume><issue>2</issue><spage>421</spage><epage>468</epage><pages>421-468</pages><issn>0034-6861</issn><eissn>1539-0756</eissn><abstract>Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic theory are based on three pillars: (i) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian with quadratic low-frequency ponderomotivelike terms, (ii) a set of gyrokinetic Maxwell (Poisson-Ampere) equations written in terms of the gyrocenter Vlasov distribution that contain low-frequency polarization (Poisson) and magnetization (Ampere) terms, and (iii) an exact energy conservation law for the gyrokinetic Vlasov-Maxwell equations that includes all the relevant linear and nonlinear coupling terms. The foundations of nonlinear gyrokinetic theory are reviewed with an emphasis on rigorous application of Lagrangian and Hamiltonian Lie-transform perturbation methods in the variational derivation of nonlinear gyrokinetic Vlasov-Maxwell equations. The physical motivations and applications of the nonlinear gyrokinetic equations that describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetized plasmas with arbitrary magnetic geometry are discussed.</abstract><cop>United States</cop><doi>10.1103/RevModPhys.79.421</doi><tpages>48</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6861 |
ispartof | Reviews of modern physics, 2007-04, Vol.79 (2), p.421-468 |
issn | 0034-6861 1539-0756 |
language | eng |
recordid | cdi_osti_scitechconnect_21013706 |
source | American Physical Society Journals |
subjects | BOLTZMANN-VLASOV EQUATION CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ENERGY CONSERVATION EVOLUTION HAMILTONIANS LAGRANGIAN FUNCTION LIE GROUPS MAGNETIZATION MAGNETOHYDRODYNAMICS NONLINEAR PROBLEMS PERTURBATION THEORY PLASMA POLARIZATION TURBULENCE VARIATIONAL METHODS |
title | Foundations of nonlinear gyrokinetic theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foundations%20of%20nonlinear%20gyrokinetic%20theory&rft.jtitle=Reviews%20of%20modern%20physics&rft.au=Brizard,%20A.%20J.&rft.date=2007-04-02&rft.volume=79&rft.issue=2&rft.spage=421&rft.epage=468&rft.pages=421-468&rft.issn=0034-6861&rft.eissn=1539-0756&rft_id=info:doi/10.1103/RevModPhys.79.421&rft_dat=%3Ccrossref_osti_%3E10_1103_RevModPhys_79_421%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |