Foundations of nonlinear gyrokinetic theory

Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic theory are based on three pillars: (i) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reviews of modern physics 2007-04, Vol.79 (2), p.421-468
Hauptverfasser: Brizard, A. J., Hahm, T. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 2
container_start_page 421
container_title Reviews of modern physics
container_volume 79
creator Brizard, A. J.
Hahm, T. S.
description Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic theory are based on three pillars: (i) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian with quadratic low-frequency ponderomotivelike terms, (ii) a set of gyrokinetic Maxwell (Poisson-Ampere) equations written in terms of the gyrocenter Vlasov distribution that contain low-frequency polarization (Poisson) and magnetization (Ampere) terms, and (iii) an exact energy conservation law for the gyrokinetic Vlasov-Maxwell equations that includes all the relevant linear and nonlinear coupling terms. The foundations of nonlinear gyrokinetic theory are reviewed with an emphasis on rigorous application of Lagrangian and Hamiltonian Lie-transform perturbation methods in the variational derivation of nonlinear gyrokinetic Vlasov-Maxwell equations. The physical motivations and applications of the nonlinear gyrokinetic equations that describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetized plasmas with arbitrary magnetic geometry are discussed.
doi_str_mv 10.1103/RevModPhys.79.421
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21013706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_RevModPhys_79_421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-f87bc1b9ce06751ec4545d5cd8da078c05154e8162ed65dceaf5b673011d8143</originalsourceid><addsrcrecordid>eNpFkE1LxDAURYMoWEd_gLuCS-n43qT56FIGZxRGFJl96LyktjomkkSh_97KCK7uvXC4i8PYJcIcEfjNi_t-DPa5H9NcNfN6gUesQMGbCpSQx6wA4HUltcRTdpbSG0wbhCrY9Sp8edvmIfhUhq70we8H79pYvo4xvE81D1Tm3oU4nrOTrt0nd_GXM7Zd3W2X99Xmaf2wvN1UxLXKVafVjnDXkAOpBDqqRS2sIKttC0oTCBS10ygXzkphybWd2EnFAdFqrPmMXR1uQ8qDSTRkRz0F7x1ls0BArkBOFB4oiiGl6DrzGYePNo4GwfwqMf9KjGrMpIT_AOCgVp8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Foundations of nonlinear gyrokinetic theory</title><source>American Physical Society Journals</source><creator>Brizard, A. J. ; Hahm, T. S.</creator><creatorcontrib>Brizard, A. J. ; Hahm, T. S.</creatorcontrib><description>Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic theory are based on three pillars: (i) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian with quadratic low-frequency ponderomotivelike terms, (ii) a set of gyrokinetic Maxwell (Poisson-Ampere) equations written in terms of the gyrocenter Vlasov distribution that contain low-frequency polarization (Poisson) and magnetization (Ampere) terms, and (iii) an exact energy conservation law for the gyrokinetic Vlasov-Maxwell equations that includes all the relevant linear and nonlinear coupling terms. The foundations of nonlinear gyrokinetic theory are reviewed with an emphasis on rigorous application of Lagrangian and Hamiltonian Lie-transform perturbation methods in the variational derivation of nonlinear gyrokinetic Vlasov-Maxwell equations. The physical motivations and applications of the nonlinear gyrokinetic equations that describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetized plasmas with arbitrary magnetic geometry are discussed.</description><identifier>ISSN: 0034-6861</identifier><identifier>EISSN: 1539-0756</identifier><identifier>DOI: 10.1103/RevModPhys.79.421</identifier><language>eng</language><publisher>United States</publisher><subject>BOLTZMANN-VLASOV EQUATION ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; ENERGY CONSERVATION ; EVOLUTION ; HAMILTONIANS ; LAGRANGIAN FUNCTION ; LIE GROUPS ; MAGNETIZATION ; MAGNETOHYDRODYNAMICS ; NONLINEAR PROBLEMS ; PERTURBATION THEORY ; PLASMA ; POLARIZATION ; TURBULENCE ; VARIATIONAL METHODS</subject><ispartof>Reviews of modern physics, 2007-04, Vol.79 (2), p.421-468</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-f87bc1b9ce06751ec4545d5cd8da078c05154e8162ed65dceaf5b673011d8143</citedby><cites>FETCH-LOGICAL-c387t-f87bc1b9ce06751ec4545d5cd8da078c05154e8162ed65dceaf5b673011d8143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21013706$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brizard, A. J.</creatorcontrib><creatorcontrib>Hahm, T. S.</creatorcontrib><title>Foundations of nonlinear gyrokinetic theory</title><title>Reviews of modern physics</title><description>Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic theory are based on three pillars: (i) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian with quadratic low-frequency ponderomotivelike terms, (ii) a set of gyrokinetic Maxwell (Poisson-Ampere) equations written in terms of the gyrocenter Vlasov distribution that contain low-frequency polarization (Poisson) and magnetization (Ampere) terms, and (iii) an exact energy conservation law for the gyrokinetic Vlasov-Maxwell equations that includes all the relevant linear and nonlinear coupling terms. The foundations of nonlinear gyrokinetic theory are reviewed with an emphasis on rigorous application of Lagrangian and Hamiltonian Lie-transform perturbation methods in the variational derivation of nonlinear gyrokinetic Vlasov-Maxwell equations. The physical motivations and applications of the nonlinear gyrokinetic equations that describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetized plasmas with arbitrary magnetic geometry are discussed.</description><subject>BOLTZMANN-VLASOV EQUATION</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>ENERGY CONSERVATION</subject><subject>EVOLUTION</subject><subject>HAMILTONIANS</subject><subject>LAGRANGIAN FUNCTION</subject><subject>LIE GROUPS</subject><subject>MAGNETIZATION</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>NONLINEAR PROBLEMS</subject><subject>PERTURBATION THEORY</subject><subject>PLASMA</subject><subject>POLARIZATION</subject><subject>TURBULENCE</subject><subject>VARIATIONAL METHODS</subject><issn>0034-6861</issn><issn>1539-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAURYMoWEd_gLuCS-n43qT56FIGZxRGFJl96LyktjomkkSh_97KCK7uvXC4i8PYJcIcEfjNi_t-DPa5H9NcNfN6gUesQMGbCpSQx6wA4HUltcRTdpbSG0wbhCrY9Sp8edvmIfhUhq70we8H79pYvo4xvE81D1Tm3oU4nrOTrt0nd_GXM7Zd3W2X99Xmaf2wvN1UxLXKVafVjnDXkAOpBDqqRS2sIKttC0oTCBS10ygXzkphybWd2EnFAdFqrPmMXR1uQ8qDSTRkRz0F7x1ls0BArkBOFB4oiiGl6DrzGYePNo4GwfwqMf9KjGrMpIT_AOCgVp8</recordid><startdate>20070402</startdate><enddate>20070402</enddate><creator>Brizard, A. J.</creator><creator>Hahm, T. S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20070402</creationdate><title>Foundations of nonlinear gyrokinetic theory</title><author>Brizard, A. J. ; Hahm, T. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-f87bc1b9ce06751ec4545d5cd8da078c05154e8162ed65dceaf5b673011d8143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>BOLTZMANN-VLASOV EQUATION</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>ENERGY CONSERVATION</topic><topic>EVOLUTION</topic><topic>HAMILTONIANS</topic><topic>LAGRANGIAN FUNCTION</topic><topic>LIE GROUPS</topic><topic>MAGNETIZATION</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>NONLINEAR PROBLEMS</topic><topic>PERTURBATION THEORY</topic><topic>PLASMA</topic><topic>POLARIZATION</topic><topic>TURBULENCE</topic><topic>VARIATIONAL METHODS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brizard, A. J.</creatorcontrib><creatorcontrib>Hahm, T. S.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Reviews of modern physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brizard, A. J.</au><au>Hahm, T. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foundations of nonlinear gyrokinetic theory</atitle><jtitle>Reviews of modern physics</jtitle><date>2007-04-02</date><risdate>2007</risdate><volume>79</volume><issue>2</issue><spage>421</spage><epage>468</epage><pages>421-468</pages><issn>0034-6861</issn><eissn>1539-0756</eissn><abstract>Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic theory are based on three pillars: (i) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian with quadratic low-frequency ponderomotivelike terms, (ii) a set of gyrokinetic Maxwell (Poisson-Ampere) equations written in terms of the gyrocenter Vlasov distribution that contain low-frequency polarization (Poisson) and magnetization (Ampere) terms, and (iii) an exact energy conservation law for the gyrokinetic Vlasov-Maxwell equations that includes all the relevant linear and nonlinear coupling terms. The foundations of nonlinear gyrokinetic theory are reviewed with an emphasis on rigorous application of Lagrangian and Hamiltonian Lie-transform perturbation methods in the variational derivation of nonlinear gyrokinetic Vlasov-Maxwell equations. The physical motivations and applications of the nonlinear gyrokinetic equations that describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetized plasmas with arbitrary magnetic geometry are discussed.</abstract><cop>United States</cop><doi>10.1103/RevModPhys.79.421</doi><tpages>48</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6861
ispartof Reviews of modern physics, 2007-04, Vol.79 (2), p.421-468
issn 0034-6861
1539-0756
language eng
recordid cdi_osti_scitechconnect_21013706
source American Physical Society Journals
subjects BOLTZMANN-VLASOV EQUATION
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
ENERGY CONSERVATION
EVOLUTION
HAMILTONIANS
LAGRANGIAN FUNCTION
LIE GROUPS
MAGNETIZATION
MAGNETOHYDRODYNAMICS
NONLINEAR PROBLEMS
PERTURBATION THEORY
PLASMA
POLARIZATION
TURBULENCE
VARIATIONAL METHODS
title Foundations of nonlinear gyrokinetic theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foundations%20of%20nonlinear%20gyrokinetic%20theory&rft.jtitle=Reviews%20of%20modern%20physics&rft.au=Brizard,%20A.%20J.&rft.date=2007-04-02&rft.volume=79&rft.issue=2&rft.spage=421&rft.epage=468&rft.pages=421-468&rft.issn=0034-6861&rft.eissn=1539-0756&rft_id=info:doi/10.1103/RevModPhys.79.421&rft_dat=%3Ccrossref_osti_%3E10_1103_RevModPhys_79_421%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true