A Darcy law for the drift velocity in a two-phase flow model

This work deals with the design and numerical approximation of an Eulerian mixture model for the simulation of two-phase dispersed flows. In contrast to the more classical two-fluid or Drift-flux models, the influence of the velocity disequilibrium is taken into account through dissipative second-or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2007-05, Vol.224 (1), p.288-313
Hauptverfasser: Guillard, H., Duval, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 313
container_issue 1
container_start_page 288
container_title Journal of computational physics
container_volume 224
creator Guillard, H.
Duval, F.
description This work deals with the design and numerical approximation of an Eulerian mixture model for the simulation of two-phase dispersed flows. In contrast to the more classical two-fluid or Drift-flux models, the influence of the velocity disequilibrium is taken into account through dissipative second-order terms characterized by a Darcy law for the relative velocity. As a result, the convective part of the model is always unconditionally hyperbolic. We show that this model corresponds to the first-order equilibrium approximation of classical two-fluid models. A finite volume approximation of this system taking advantage of the hyperbolic nature of the convective part of the model and of the particular structural form of the dissipative part is proposed. Numerical applications are presented to assess the capabilities of the model.
doi_str_mv 10.1016/j.jcp.2007.02.025
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20991582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999107000769</els_id><sourcerecordid>29786988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-657dd8c86489ea6a017a3b0fc848949acfc38c17698fd42ab1bd3801d4cfcdc43</originalsourceid><addsrcrecordid>eNp9kE-LFDEQxYMoOK5-AG8BUfDQYyX9Jwl6GVbXFQa86DlkKgmTIdMZk94Z5tubphe9LRQEKr96Ve8R8pbBmgEbPh3WBzytOYBYA6_VPyMrBgoaLtjwnKwAOGuUUuwleVXKAQBk38kV-bKhX03GK43mQn3KdNo7anPwEz27mDBMVxpGauh0Sc1pb4qjPqYLPSbr4mvywptY3JvH94b8vvv26_a-2f78_uN2s22w4zA1Qy-slSiHTipnBgNMmHYHHmVtdMqgx1YiE4OS3nbc7NjOthKY7eqPxa69Ie8W3VSmoEs9yuEe0zg6nDSH6qqXvFIfF2pvoj7lcDT5qpMJ-n6z1XMPWmC8lfLMKvthYU85_XlwZdLHUNDFaEaXHormSsh6jqwgW0DMqZTs_D9lBnpOXh90TV7PyWvgtfo68_5R3BQ00WczYij_B6WQQklRuc8L52p25-DybM2N6GzIszObwhNb_gJXP5Xc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29786988</pqid></control><display><type>article</type><title>A Darcy law for the drift velocity in a two-phase flow model</title><source>Elsevier ScienceDirect Journals</source><creator>Guillard, H. ; Duval, F.</creator><creatorcontrib>Guillard, H. ; Duval, F.</creatorcontrib><description>This work deals with the design and numerical approximation of an Eulerian mixture model for the simulation of two-phase dispersed flows. In contrast to the more classical two-fluid or Drift-flux models, the influence of the velocity disequilibrium is taken into account through dissipative second-order terms characterized by a Darcy law for the relative velocity. As a result, the convective part of the model is always unconditionally hyperbolic. We show that this model corresponds to the first-order equilibrium approximation of classical two-fluid models. A finite volume approximation of this system taking advantage of the hyperbolic nature of the convective part of the model and of the particular structural form of the dissipative part is proposed. Numerical applications are presented to assess the capabilities of the model.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2007.02.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>APPROXIMATIONS ; Bubbly flows ; Chapman–Enskog expansion ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computational techniques ; COMPUTERIZED SIMULATION ; DARCY LAW ; Drift-flux ; Exact sciences and technology ; FLUIDS ; Mathematical methods in physics ; MATHEMATICAL MODELS ; MIXTURES ; Physics ; Riemann solver ; TWO-PHASE FLOW ; Two-phase flows ; VELOCITY</subject><ispartof>Journal of computational physics, 2007-05, Vol.224 (1), p.288-313</ispartof><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-657dd8c86489ea6a017a3b0fc848949acfc38c17698fd42ab1bd3801d4cfcdc43</citedby><cites>FETCH-LOGICAL-c420t-657dd8c86489ea6a017a3b0fc848949acfc38c17698fd42ab1bd3801d4cfcdc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2007.02.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18787987$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03012388$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20991582$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guillard, H.</creatorcontrib><creatorcontrib>Duval, F.</creatorcontrib><title>A Darcy law for the drift velocity in a two-phase flow model</title><title>Journal of computational physics</title><description>This work deals with the design and numerical approximation of an Eulerian mixture model for the simulation of two-phase dispersed flows. In contrast to the more classical two-fluid or Drift-flux models, the influence of the velocity disequilibrium is taken into account through dissipative second-order terms characterized by a Darcy law for the relative velocity. As a result, the convective part of the model is always unconditionally hyperbolic. We show that this model corresponds to the first-order equilibrium approximation of classical two-fluid models. A finite volume approximation of this system taking advantage of the hyperbolic nature of the convective part of the model and of the particular structural form of the dissipative part is proposed. Numerical applications are presented to assess the capabilities of the model.</description><subject>APPROXIMATIONS</subject><subject>Bubbly flows</subject><subject>Chapman–Enskog expansion</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computational techniques</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DARCY LAW</subject><subject>Drift-flux</subject><subject>Exact sciences and technology</subject><subject>FLUIDS</subject><subject>Mathematical methods in physics</subject><subject>MATHEMATICAL MODELS</subject><subject>MIXTURES</subject><subject>Physics</subject><subject>Riemann solver</subject><subject>TWO-PHASE FLOW</subject><subject>Two-phase flows</subject><subject>VELOCITY</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE-LFDEQxYMoOK5-AG8BUfDQYyX9Jwl6GVbXFQa86DlkKgmTIdMZk94Z5tubphe9LRQEKr96Ve8R8pbBmgEbPh3WBzytOYBYA6_VPyMrBgoaLtjwnKwAOGuUUuwleVXKAQBk38kV-bKhX03GK43mQn3KdNo7anPwEz27mDBMVxpGauh0Sc1pb4qjPqYLPSbr4mvywptY3JvH94b8vvv26_a-2f78_uN2s22w4zA1Qy-slSiHTipnBgNMmHYHHmVtdMqgx1YiE4OS3nbc7NjOthKY7eqPxa69Ie8W3VSmoEs9yuEe0zg6nDSH6qqXvFIfF2pvoj7lcDT5qpMJ-n6z1XMPWmC8lfLMKvthYU85_XlwZdLHUNDFaEaXHormSsh6jqwgW0DMqZTs_D9lBnpOXh90TV7PyWvgtfo68_5R3BQ00WczYij_B6WQQklRuc8L52p25-DybM2N6GzIszObwhNb_gJXP5Xc</recordid><startdate>20070520</startdate><enddate>20070520</enddate><creator>Guillard, H.</creator><creator>Duval, F.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>OTOTI</scope></search><sort><creationdate>20070520</creationdate><title>A Darcy law for the drift velocity in a two-phase flow model</title><author>Guillard, H. ; Duval, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-657dd8c86489ea6a017a3b0fc848949acfc38c17698fd42ab1bd3801d4cfcdc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>APPROXIMATIONS</topic><topic>Bubbly flows</topic><topic>Chapman–Enskog expansion</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computational techniques</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DARCY LAW</topic><topic>Drift-flux</topic><topic>Exact sciences and technology</topic><topic>FLUIDS</topic><topic>Mathematical methods in physics</topic><topic>MATHEMATICAL MODELS</topic><topic>MIXTURES</topic><topic>Physics</topic><topic>Riemann solver</topic><topic>TWO-PHASE FLOW</topic><topic>Two-phase flows</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillard, H.</creatorcontrib><creatorcontrib>Duval, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillard, H.</au><au>Duval, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Darcy law for the drift velocity in a two-phase flow model</atitle><jtitle>Journal of computational physics</jtitle><date>2007-05-20</date><risdate>2007</risdate><volume>224</volume><issue>1</issue><spage>288</spage><epage>313</epage><pages>288-313</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>This work deals with the design and numerical approximation of an Eulerian mixture model for the simulation of two-phase dispersed flows. In contrast to the more classical two-fluid or Drift-flux models, the influence of the velocity disequilibrium is taken into account through dissipative second-order terms characterized by a Darcy law for the relative velocity. As a result, the convective part of the model is always unconditionally hyperbolic. We show that this model corresponds to the first-order equilibrium approximation of classical two-fluid models. A finite volume approximation of this system taking advantage of the hyperbolic nature of the convective part of the model and of the particular structural form of the dissipative part is proposed. Numerical applications are presented to assess the capabilities of the model.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2007.02.025</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2007-05, Vol.224 (1), p.288-313
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_20991582
source Elsevier ScienceDirect Journals
subjects APPROXIMATIONS
Bubbly flows
Chapman–Enskog expansion
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computational techniques
COMPUTERIZED SIMULATION
DARCY LAW
Drift-flux
Exact sciences and technology
FLUIDS
Mathematical methods in physics
MATHEMATICAL MODELS
MIXTURES
Physics
Riemann solver
TWO-PHASE FLOW
Two-phase flows
VELOCITY
title A Darcy law for the drift velocity in a two-phase flow model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Darcy%20law%20for%20the%20drift%20velocity%20in%20a%20two-phase%20flow%20model&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Guillard,%20H.&rft.date=2007-05-20&rft.volume=224&rft.issue=1&rft.spage=288&rft.epage=313&rft.pages=288-313&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2007.02.025&rft_dat=%3Cproquest_osti_%3E29786988%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29786988&rft_id=info:pmid/&rft_els_id=S0021999107000769&rfr_iscdi=true