A Darcy law for the drift velocity in a two-phase flow model
This work deals with the design and numerical approximation of an Eulerian mixture model for the simulation of two-phase dispersed flows. In contrast to the more classical two-fluid or Drift-flux models, the influence of the velocity disequilibrium is taken into account through dissipative second-or...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2007-05, Vol.224 (1), p.288-313 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 313 |
---|---|
container_issue | 1 |
container_start_page | 288 |
container_title | Journal of computational physics |
container_volume | 224 |
creator | Guillard, H. Duval, F. |
description | This work deals with the design and numerical approximation of an Eulerian mixture model for the simulation of two-phase dispersed flows. In contrast to the more classical two-fluid or Drift-flux models, the influence of the velocity disequilibrium is taken into account through dissipative second-order terms characterized by a Darcy law for the relative velocity. As a result, the convective part of the model is always unconditionally hyperbolic. We show that this model corresponds to the first-order equilibrium approximation of classical two-fluid models. A finite volume approximation of this system taking advantage of the hyperbolic nature of the convective part of the model and of the particular structural form of the dissipative part is proposed. Numerical applications are presented to assess the capabilities of the model. |
doi_str_mv | 10.1016/j.jcp.2007.02.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20991582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999107000769</els_id><sourcerecordid>29786988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-657dd8c86489ea6a017a3b0fc848949acfc38c17698fd42ab1bd3801d4cfcdc43</originalsourceid><addsrcrecordid>eNp9kE-LFDEQxYMoOK5-AG8BUfDQYyX9Jwl6GVbXFQa86DlkKgmTIdMZk94Z5tubphe9LRQEKr96Ve8R8pbBmgEbPh3WBzytOYBYA6_VPyMrBgoaLtjwnKwAOGuUUuwleVXKAQBk38kV-bKhX03GK43mQn3KdNo7anPwEz27mDBMVxpGauh0Sc1pb4qjPqYLPSbr4mvywptY3JvH94b8vvv26_a-2f78_uN2s22w4zA1Qy-slSiHTipnBgNMmHYHHmVtdMqgx1YiE4OS3nbc7NjOthKY7eqPxa69Ie8W3VSmoEs9yuEe0zg6nDSH6qqXvFIfF2pvoj7lcDT5qpMJ-n6z1XMPWmC8lfLMKvthYU85_XlwZdLHUNDFaEaXHormSsh6jqwgW0DMqZTs_D9lBnpOXh90TV7PyWvgtfo68_5R3BQ00WczYij_B6WQQklRuc8L52p25-DybM2N6GzIszObwhNb_gJXP5Xc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29786988</pqid></control><display><type>article</type><title>A Darcy law for the drift velocity in a two-phase flow model</title><source>Elsevier ScienceDirect Journals</source><creator>Guillard, H. ; Duval, F.</creator><creatorcontrib>Guillard, H. ; Duval, F.</creatorcontrib><description>This work deals with the design and numerical approximation of an Eulerian mixture model for the simulation of two-phase dispersed flows. In contrast to the more classical two-fluid or Drift-flux models, the influence of the velocity disequilibrium is taken into account through dissipative second-order terms characterized by a Darcy law for the relative velocity. As a result, the convective part of the model is always unconditionally hyperbolic. We show that this model corresponds to the first-order equilibrium approximation of classical two-fluid models. A finite volume approximation of this system taking advantage of the hyperbolic nature of the convective part of the model and of the particular structural form of the dissipative part is proposed. Numerical applications are presented to assess the capabilities of the model.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2007.02.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>APPROXIMATIONS ; Bubbly flows ; Chapman–Enskog expansion ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computational techniques ; COMPUTERIZED SIMULATION ; DARCY LAW ; Drift-flux ; Exact sciences and technology ; FLUIDS ; Mathematical methods in physics ; MATHEMATICAL MODELS ; MIXTURES ; Physics ; Riemann solver ; TWO-PHASE FLOW ; Two-phase flows ; VELOCITY</subject><ispartof>Journal of computational physics, 2007-05, Vol.224 (1), p.288-313</ispartof><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-657dd8c86489ea6a017a3b0fc848949acfc38c17698fd42ab1bd3801d4cfcdc43</citedby><cites>FETCH-LOGICAL-c420t-657dd8c86489ea6a017a3b0fc848949acfc38c17698fd42ab1bd3801d4cfcdc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2007.02.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18787987$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03012388$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20991582$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guillard, H.</creatorcontrib><creatorcontrib>Duval, F.</creatorcontrib><title>A Darcy law for the drift velocity in a two-phase flow model</title><title>Journal of computational physics</title><description>This work deals with the design and numerical approximation of an Eulerian mixture model for the simulation of two-phase dispersed flows. In contrast to the more classical two-fluid or Drift-flux models, the influence of the velocity disequilibrium is taken into account through dissipative second-order terms characterized by a Darcy law for the relative velocity. As a result, the convective part of the model is always unconditionally hyperbolic. We show that this model corresponds to the first-order equilibrium approximation of classical two-fluid models. A finite volume approximation of this system taking advantage of the hyperbolic nature of the convective part of the model and of the particular structural form of the dissipative part is proposed. Numerical applications are presented to assess the capabilities of the model.</description><subject>APPROXIMATIONS</subject><subject>Bubbly flows</subject><subject>Chapman–Enskog expansion</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computational techniques</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DARCY LAW</subject><subject>Drift-flux</subject><subject>Exact sciences and technology</subject><subject>FLUIDS</subject><subject>Mathematical methods in physics</subject><subject>MATHEMATICAL MODELS</subject><subject>MIXTURES</subject><subject>Physics</subject><subject>Riemann solver</subject><subject>TWO-PHASE FLOW</subject><subject>Two-phase flows</subject><subject>VELOCITY</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE-LFDEQxYMoOK5-AG8BUfDQYyX9Jwl6GVbXFQa86DlkKgmTIdMZk94Z5tubphe9LRQEKr96Ve8R8pbBmgEbPh3WBzytOYBYA6_VPyMrBgoaLtjwnKwAOGuUUuwleVXKAQBk38kV-bKhX03GK43mQn3KdNo7anPwEz27mDBMVxpGauh0Sc1pb4qjPqYLPSbr4mvywptY3JvH94b8vvv26_a-2f78_uN2s22w4zA1Qy-slSiHTipnBgNMmHYHHmVtdMqgx1YiE4OS3nbc7NjOthKY7eqPxa69Ie8W3VSmoEs9yuEe0zg6nDSH6qqXvFIfF2pvoj7lcDT5qpMJ-n6z1XMPWmC8lfLMKvthYU85_XlwZdLHUNDFaEaXHormSsh6jqwgW0DMqZTs_D9lBnpOXh90TV7PyWvgtfo68_5R3BQ00WczYij_B6WQQklRuc8L52p25-DybM2N6GzIszObwhNb_gJXP5Xc</recordid><startdate>20070520</startdate><enddate>20070520</enddate><creator>Guillard, H.</creator><creator>Duval, F.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>OTOTI</scope></search><sort><creationdate>20070520</creationdate><title>A Darcy law for the drift velocity in a two-phase flow model</title><author>Guillard, H. ; Duval, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-657dd8c86489ea6a017a3b0fc848949acfc38c17698fd42ab1bd3801d4cfcdc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>APPROXIMATIONS</topic><topic>Bubbly flows</topic><topic>Chapman–Enskog expansion</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computational techniques</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DARCY LAW</topic><topic>Drift-flux</topic><topic>Exact sciences and technology</topic><topic>FLUIDS</topic><topic>Mathematical methods in physics</topic><topic>MATHEMATICAL MODELS</topic><topic>MIXTURES</topic><topic>Physics</topic><topic>Riemann solver</topic><topic>TWO-PHASE FLOW</topic><topic>Two-phase flows</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillard, H.</creatorcontrib><creatorcontrib>Duval, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillard, H.</au><au>Duval, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Darcy law for the drift velocity in a two-phase flow model</atitle><jtitle>Journal of computational physics</jtitle><date>2007-05-20</date><risdate>2007</risdate><volume>224</volume><issue>1</issue><spage>288</spage><epage>313</epage><pages>288-313</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>This work deals with the design and numerical approximation of an Eulerian mixture model for the simulation of two-phase dispersed flows. In contrast to the more classical two-fluid or Drift-flux models, the influence of the velocity disequilibrium is taken into account through dissipative second-order terms characterized by a Darcy law for the relative velocity. As a result, the convective part of the model is always unconditionally hyperbolic. We show that this model corresponds to the first-order equilibrium approximation of classical two-fluid models. A finite volume approximation of this system taking advantage of the hyperbolic nature of the convective part of the model and of the particular structural form of the dissipative part is proposed. Numerical applications are presented to assess the capabilities of the model.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2007.02.025</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2007-05, Vol.224 (1), p.288-313 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_20991582 |
source | Elsevier ScienceDirect Journals |
subjects | APPROXIMATIONS Bubbly flows Chapman–Enskog expansion CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computational techniques COMPUTERIZED SIMULATION DARCY LAW Drift-flux Exact sciences and technology FLUIDS Mathematical methods in physics MATHEMATICAL MODELS MIXTURES Physics Riemann solver TWO-PHASE FLOW Two-phase flows VELOCITY |
title | A Darcy law for the drift velocity in a two-phase flow model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Darcy%20law%20for%20the%20drift%20velocity%20in%20a%20two-phase%20flow%20model&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Guillard,%20H.&rft.date=2007-05-20&rft.volume=224&rft.issue=1&rft.spage=288&rft.epage=313&rft.pages=288-313&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2007.02.025&rft_dat=%3Cproquest_osti_%3E29786988%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29786988&rft_id=info:pmid/&rft_els_id=S0021999107000769&rfr_iscdi=true |