Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles

A new microchannel heat exchanger (MCHE) with S-shaped fins was developed using the three-dimensional computational fluid dynamics (3D CFD) FLUENT code. The MCHE provided 6–7 times lower pressure drop while maintaining heat-transfer performance that was almost equivalent to that of a conventional MC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental thermal and fluid science 2007-11, Vol.32 (2), p.560-570
Hauptverfasser: Ngo, Tri Lam, Kato, Yasuyoshi, Nikitin, Konstantin, Ishizuka, Takao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 570
container_issue 2
container_start_page 560
container_title Experimental thermal and fluid science
container_volume 32
creator Ngo, Tri Lam
Kato, Yasuyoshi
Nikitin, Konstantin
Ishizuka, Takao
description A new microchannel heat exchanger (MCHE) with S-shaped fins was developed using the three-dimensional computational fluid dynamics (3D CFD) FLUENT code. The MCHE provided 6–7 times lower pressure drop while maintaining heat-transfer performance that was almost equivalent to that of a conventional MCHE with zigzag fins. This study was done to confirm the simulation results of thermal-hydraulic performance using a supercritical carbon dioxide loop, and to propose empirical correlations of Nusselt numbers and pressure-drop factors for a new MCHE with S-shaped fins and a conventional one with zigzag fins. This study is also intended to confirm the independence of Pr obtained in the previous study by widely varying Pr from 0.75 to 2.2. Experimental results show that the pressure-drop factor of the MCHEs with S-shaped fins is 4–5 times less than that of MCHE with zigzag fins, although Nu is 24–34% less, depending on the Re within its range. The Nusselt number correlations are expressed, respectively as Nu S-shaped fins = 0.1740 Re 0.593 Pr 0.430 and Nu zigzag fins = 0.1696 Re 0.629 Pr 0.317 for the MCHE with S-shaped and zigzag fins, and their pressure-drop factors are given as f S-shaped fins = 0.4545 Re −0.340 and f zigzag fins = 0.1924 Re −0.091. The Nu correlation of the MCHE with S-shaped fins reproduces the experimental data of overall heat transfer coefficients with a standard deviation (1 sigma) of ±2.3%, although it is ±3.0% for the MCHE with zigzag fins. The calculated pressure drops obtained from pressure-drop factor correlations agree with the experimental data within a standard deviation of ±16.6% and ±13.5% for the MCHEs with S-shaped and zigzag fins, respectively.
doi_str_mv 10.1016/j.expthermflusci.2007.06.006
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20975366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0894177707000854</els_id><sourcerecordid>1082204863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-1dce6c9454208c87157df5e297c252cedaca20d480540ab38de5cbb1e2ade96d3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEEkvhP1jiQ1yyjJ3YTiQuqKIUqRIH4Gx5x5ONV9k42FnY9twfXqdbIXEBTpal552xn7coXnFYc-Dq3W5Nx2nuKe674ZDQrwWAXoNaA6hHxYo3ui2FaNTjYgVNW5dca_20eJbSDgAawWFV3F6Sndkc7Zg6isyOjk2RUjpEYi6GiWGIkQY7-zAmFjq29xgD9nYcaWD9Eqbjct1STOyXn3v2tUy9ncjdD7vx2xu7ZZ3P6S5EhjZuwsicD0fviOE1DpSeF086OyR68XCeFd8vPn47vyyvvnz6fP7hqsS6kXPJHZLCtpa1gAYbzaV2nSTRahRSIDmLVoCrG5A12E3VOJK42XAS1lGrXHVWvDzNDWn2JgubCXsM-Ss4GwGtlpVSmXpzoqYYfhwozWbvE9Iw2JHCIZmKZ6cS6gy-_SvIldZtfrlU_0ZzHQLqRlUZfX9Cs-eUInVmin5v43WGzFK72Zk_azdL7QaUybXn-OuHTTahHbrcLPr0e0ZGQYr7NRcnjrLwn57i4oPGbNHHRYcL_v8W3gE_ms47</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082204863</pqid></control><display><type>article</type><title>Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ngo, Tri Lam ; Kato, Yasuyoshi ; Nikitin, Konstantin ; Ishizuka, Takao</creator><creatorcontrib>Ngo, Tri Lam ; Kato, Yasuyoshi ; Nikitin, Konstantin ; Ishizuka, Takao</creatorcontrib><description>A new microchannel heat exchanger (MCHE) with S-shaped fins was developed using the three-dimensional computational fluid dynamics (3D CFD) FLUENT code. The MCHE provided 6–7 times lower pressure drop while maintaining heat-transfer performance that was almost equivalent to that of a conventional MCHE with zigzag fins. This study was done to confirm the simulation results of thermal-hydraulic performance using a supercritical carbon dioxide loop, and to propose empirical correlations of Nusselt numbers and pressure-drop factors for a new MCHE with S-shaped fins and a conventional one with zigzag fins. This study is also intended to confirm the independence of Pr obtained in the previous study by widely varying Pr from 0.75 to 2.2. Experimental results show that the pressure-drop factor of the MCHEs with S-shaped fins is 4–5 times less than that of MCHE with zigzag fins, although Nu is 24–34% less, depending on the Re within its range. The Nusselt number correlations are expressed, respectively as Nu S-shaped fins = 0.1740 Re 0.593 Pr 0.430 and Nu zigzag fins = 0.1696 Re 0.629 Pr 0.317 for the MCHE with S-shaped and zigzag fins, and their pressure-drop factors are given as f S-shaped fins = 0.4545 Re −0.340 and f zigzag fins = 0.1924 Re −0.091. The Nu correlation of the MCHE with S-shaped fins reproduces the experimental data of overall heat transfer coefficients with a standard deviation (1 sigma) of ±2.3%, although it is ±3.0% for the MCHE with zigzag fins. The calculated pressure drops obtained from pressure-drop factor correlations agree with the experimental data within a standard deviation of ±16.6% and ±13.5% for the MCHEs with S-shaped and zigzag fins, respectively.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/j.expthermflusci.2007.06.006</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; CARBON DIOXIDE ; Computational fluid dynamics ; COMPUTERIZED SIMULATION ; Correlation ; CORRELATIONS ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; ENGINEERING ; Exact sciences and technology ; EXPERIMENTAL DATA ; FINS ; Fluid flow ; HEAT EXCHANGERS ; Heat exchangers (included heat transformers, condensers, cooling towers) ; HEAT TRANSFER ; Microchannel heat exchanger ; NUSSELT NUMBER ; PRANDTL NUMBER ; PRESSURE DROP ; Recuperator ; REYNOLDS NUMBER ; Standard deviation ; Supercritical CO 2 ; THERMAL HYDRAULICS ; Three dimensional ; THREE-DIMENSIONAL CALCULATIONS</subject><ispartof>Experimental thermal and fluid science, 2007-11, Vol.32 (2), p.560-570</ispartof><rights>2007 Elsevier Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-1dce6c9454208c87157df5e297c252cedaca20d480540ab38de5cbb1e2ade96d3</citedby><cites>FETCH-LOGICAL-c485t-1dce6c9454208c87157df5e297c252cedaca20d480540ab38de5cbb1e2ade96d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.expthermflusci.2007.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20005263$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20975366$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ngo, Tri Lam</creatorcontrib><creatorcontrib>Kato, Yasuyoshi</creatorcontrib><creatorcontrib>Nikitin, Konstantin</creatorcontrib><creatorcontrib>Ishizuka, Takao</creatorcontrib><title>Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles</title><title>Experimental thermal and fluid science</title><description>A new microchannel heat exchanger (MCHE) with S-shaped fins was developed using the three-dimensional computational fluid dynamics (3D CFD) FLUENT code. The MCHE provided 6–7 times lower pressure drop while maintaining heat-transfer performance that was almost equivalent to that of a conventional MCHE with zigzag fins. This study was done to confirm the simulation results of thermal-hydraulic performance using a supercritical carbon dioxide loop, and to propose empirical correlations of Nusselt numbers and pressure-drop factors for a new MCHE with S-shaped fins and a conventional one with zigzag fins. This study is also intended to confirm the independence of Pr obtained in the previous study by widely varying Pr from 0.75 to 2.2. Experimental results show that the pressure-drop factor of the MCHEs with S-shaped fins is 4–5 times less than that of MCHE with zigzag fins, although Nu is 24–34% less, depending on the Re within its range. The Nusselt number correlations are expressed, respectively as Nu S-shaped fins = 0.1740 Re 0.593 Pr 0.430 and Nu zigzag fins = 0.1696 Re 0.629 Pr 0.317 for the MCHE with S-shaped and zigzag fins, and their pressure-drop factors are given as f S-shaped fins = 0.4545 Re −0.340 and f zigzag fins = 0.1924 Re −0.091. The Nu correlation of the MCHE with S-shaped fins reproduces the experimental data of overall heat transfer coefficients with a standard deviation (1 sigma) of ±2.3%, although it is ±3.0% for the MCHE with zigzag fins. The calculated pressure drops obtained from pressure-drop factor correlations agree with the experimental data within a standard deviation of ±16.6% and ±13.5% for the MCHEs with S-shaped and zigzag fins, respectively.</description><subject>Applied sciences</subject><subject>CARBON DIOXIDE</subject><subject>Computational fluid dynamics</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Correlation</subject><subject>CORRELATIONS</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>ENGINEERING</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FINS</subject><subject>Fluid flow</subject><subject>HEAT EXCHANGERS</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>HEAT TRANSFER</subject><subject>Microchannel heat exchanger</subject><subject>NUSSELT NUMBER</subject><subject>PRANDTL NUMBER</subject><subject>PRESSURE DROP</subject><subject>Recuperator</subject><subject>REYNOLDS NUMBER</subject><subject>Standard deviation</subject><subject>Supercritical CO 2</subject><subject>THERMAL HYDRAULICS</subject><subject>Three dimensional</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhiMEEkvhP1jiQ1yyjJ3YTiQuqKIUqRIH4Gx5x5ONV9k42FnY9twfXqdbIXEBTpal552xn7coXnFYc-Dq3W5Nx2nuKe674ZDQrwWAXoNaA6hHxYo3ui2FaNTjYgVNW5dca_20eJbSDgAawWFV3F6Sndkc7Zg6isyOjk2RUjpEYi6GiWGIkQY7-zAmFjq29xgD9nYcaWD9Eqbjct1STOyXn3v2tUy9ncjdD7vx2xu7ZZ3P6S5EhjZuwsicD0fviOE1DpSeF086OyR68XCeFd8vPn47vyyvvnz6fP7hqsS6kXPJHZLCtpa1gAYbzaV2nSTRahRSIDmLVoCrG5A12E3VOJK42XAS1lGrXHVWvDzNDWn2JgubCXsM-Ss4GwGtlpVSmXpzoqYYfhwozWbvE9Iw2JHCIZmKZ6cS6gy-_SvIldZtfrlU_0ZzHQLqRlUZfX9Cs-eUInVmin5v43WGzFK72Zk_azdL7QaUybXn-OuHTTahHbrcLPr0e0ZGQYr7NRcnjrLwn57i4oPGbNHHRYcL_v8W3gE_ms47</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Ngo, Tri Lam</creator><creator>Kato, Yasuyoshi</creator><creator>Nikitin, Konstantin</creator><creator>Ishizuka, Takao</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20071101</creationdate><title>Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles</title><author>Ngo, Tri Lam ; Kato, Yasuyoshi ; Nikitin, Konstantin ; Ishizuka, Takao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-1dce6c9454208c87157df5e297c252cedaca20d480540ab38de5cbb1e2ade96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>CARBON DIOXIDE</topic><topic>Computational fluid dynamics</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Correlation</topic><topic>CORRELATIONS</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>ENGINEERING</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FINS</topic><topic>Fluid flow</topic><topic>HEAT EXCHANGERS</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>HEAT TRANSFER</topic><topic>Microchannel heat exchanger</topic><topic>NUSSELT NUMBER</topic><topic>PRANDTL NUMBER</topic><topic>PRESSURE DROP</topic><topic>Recuperator</topic><topic>REYNOLDS NUMBER</topic><topic>Standard deviation</topic><topic>Supercritical CO 2</topic><topic>THERMAL HYDRAULICS</topic><topic>Three dimensional</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngo, Tri Lam</creatorcontrib><creatorcontrib>Kato, Yasuyoshi</creatorcontrib><creatorcontrib>Nikitin, Konstantin</creatorcontrib><creatorcontrib>Ishizuka, Takao</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngo, Tri Lam</au><au>Kato, Yasuyoshi</au><au>Nikitin, Konstantin</au><au>Ishizuka, Takao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>32</volume><issue>2</issue><spage>560</spage><epage>570</epage><pages>560-570</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>A new microchannel heat exchanger (MCHE) with S-shaped fins was developed using the three-dimensional computational fluid dynamics (3D CFD) FLUENT code. The MCHE provided 6–7 times lower pressure drop while maintaining heat-transfer performance that was almost equivalent to that of a conventional MCHE with zigzag fins. This study was done to confirm the simulation results of thermal-hydraulic performance using a supercritical carbon dioxide loop, and to propose empirical correlations of Nusselt numbers and pressure-drop factors for a new MCHE with S-shaped fins and a conventional one with zigzag fins. This study is also intended to confirm the independence of Pr obtained in the previous study by widely varying Pr from 0.75 to 2.2. Experimental results show that the pressure-drop factor of the MCHEs with S-shaped fins is 4–5 times less than that of MCHE with zigzag fins, although Nu is 24–34% less, depending on the Re within its range. The Nusselt number correlations are expressed, respectively as Nu S-shaped fins = 0.1740 Re 0.593 Pr 0.430 and Nu zigzag fins = 0.1696 Re 0.629 Pr 0.317 for the MCHE with S-shaped and zigzag fins, and their pressure-drop factors are given as f S-shaped fins = 0.4545 Re −0.340 and f zigzag fins = 0.1924 Re −0.091. The Nu correlation of the MCHE with S-shaped fins reproduces the experimental data of overall heat transfer coefficients with a standard deviation (1 sigma) of ±2.3%, although it is ±3.0% for the MCHE with zigzag fins. The calculated pressure drops obtained from pressure-drop factor correlations agree with the experimental data within a standard deviation of ±16.6% and ±13.5% for the MCHEs with S-shaped and zigzag fins, respectively.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.expthermflusci.2007.06.006</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-1777
ispartof Experimental thermal and fluid science, 2007-11, Vol.32 (2), p.560-570
issn 0894-1777
1879-2286
language eng
recordid cdi_osti_scitechconnect_20975366
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
CARBON DIOXIDE
Computational fluid dynamics
COMPUTERIZED SIMULATION
Correlation
CORRELATIONS
Devices using thermal energy
Energy
Energy. Thermal use of fuels
ENGINEERING
Exact sciences and technology
EXPERIMENTAL DATA
FINS
Fluid flow
HEAT EXCHANGERS
Heat exchangers (included heat transformers, condensers, cooling towers)
HEAT TRANSFER
Microchannel heat exchanger
NUSSELT NUMBER
PRANDTL NUMBER
PRESSURE DROP
Recuperator
REYNOLDS NUMBER
Standard deviation
Supercritical CO 2
THERMAL HYDRAULICS
Three dimensional
THREE-DIMENSIONAL CALCULATIONS
title Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20and%20pressure%20drop%20correlations%20of%20microchannel%20heat%20exchangers%20with%20S-shaped%20and%20zigzag%20fins%20for%20carbon%20dioxide%20cycles&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Ngo,%20Tri%20Lam&rft.date=2007-11-01&rft.volume=32&rft.issue=2&rft.spage=560&rft.epage=570&rft.pages=560-570&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/j.expthermflusci.2007.06.006&rft_dat=%3Cproquest_osti_%3E1082204863%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082204863&rft_id=info:pmid/&rft_els_id=S0894177707000854&rfr_iscdi=true