Altered poly(ADP-ribose) metabolism impairs cellular responses to genotoxic stress in a hypomorphic mutant of poly(ADP-ribose) glycohydrolase

Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental cell research 2007-03, Vol.313 (5), p.984-996
Hauptverfasser: Gao, Hong, Coyle, Donna L., Meyer-Ficca, Mirella L., Meyer, Ralph G., Jacobson, Elaine L., Wang, Zhao-Qi, Jacobson, Myron K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 996
container_issue 5
container_start_page 984
container_title Experimental cell research
container_volume 313
creator Gao, Hong
Coyle, Donna L.
Meyer-Ficca, Mirella L.
Meyer, Ralph G.
Jacobson, Elaine L.
Wang, Zhao-Qi
Jacobson, Myron K.
description Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Δ2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl- N′-nitro- N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Δ2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Δ2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain.
doi_str_mv 10.1016/j.yexcr.2006.12.025
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20972130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014482706005258</els_id><sourcerecordid>70210820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-f50cda4c599a0ddb55eb483d9ab03f818d8b86294002607f9a3b35e949a404573</originalsourceid><addsrcrecordid>eNp9kd-K1TAQh4Mo7nH1CQQJCqIXrZM0bdKLvTisf2FBL_Q6pOl0Tw5tU5NUtg_hO9t6DggKXgUm38zwm4-QpwxyBqx6c8wXvLMh5wBVzngOvLxHdgxqyLjg_D7ZATCRCcXlBXkU4xEAlGLVQ3LBJJeV4HJHfu77hAFbOvl-ebV_-yULrvERX9MBk2l87-JA3TAZFyK12PdzbwINGCc_Row0eXqLo0_-zlka0_oRqRupoYdl8oMP02GtD3MyY6K--3fLbb9Yf1ja4HsT8TF50Jk-4pPze0m-vX_39fpjdvP5w6fr_U1mhVQp60qwrRG2rGsDbduUJTZCFW1tGig6xVSrGlXxWgDwCmRXm6IpSqxFbQSIUhaX5MVpro_J6WhdQnuwfhzRJs2hlpwVsFIvT9QU_PcZY9KDi9sNzIh-jloCZ6D4Bj7_Czz6OYxrAs1qUcmSq2qFihNkg48xYKen4AYTFs1Ab0L1Uf8WqjehmnG9Cl27np1Hz82A7Z-es8EVuDoBuN7rh8OwxcHRYuvClqb17r8LfgGiq7PH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194675286</pqid></control><display><type>article</type><title>Altered poly(ADP-ribose) metabolism impairs cellular responses to genotoxic stress in a hypomorphic mutant of poly(ADP-ribose) glycohydrolase</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gao, Hong ; Coyle, Donna L. ; Meyer-Ficca, Mirella L. ; Meyer, Ralph G. ; Jacobson, Elaine L. ; Wang, Zhao-Qi ; Jacobson, Myron K.</creator><creatorcontrib>Gao, Hong ; Coyle, Donna L. ; Meyer-Ficca, Mirella L. ; Meyer, Ralph G. ; Jacobson, Elaine L. ; Wang, Zhao-Qi ; Jacobson, Myron K.</creatorcontrib><description>Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Δ2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl- N′-nitro- N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Δ2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Δ2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain.</description><identifier>ISSN: 0014-4827</identifier><identifier>EISSN: 1090-2422</identifier><identifier>DOI: 10.1016/j.yexcr.2006.12.025</identifier><identifier>PMID: 17276427</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; ADP ; Animals ; APOPTOSIS ; BIOLOGICAL STRESS ; Cells, Cultured ; Cellular biology ; DNA Breaks ; DNA Damage ; DNA DAMAGES ; DNA-Binding Proteins - metabolism ; Enzyme Precursors ; Genotoxic stress ; Glycoside Hydrolases - genetics ; Glycoside Hydrolases - metabolism ; Histones - metabolism ; METABOLISM ; Methylnitronitrosoguanidine - pharmacology ; MICE ; MUTANTS ; Mutation ; NAD ; NAD - metabolism ; NADP ; PHOSPHORYLATION ; Poly Adenosine Diphosphate Ribose - metabolism ; Poly(ADP-ribose) ; Poly(ADP-ribose) glycohydrolase ; Poly(ADP-ribose) polymerase ; Poly(ADP-ribose) Polymerases - metabolism ; POLYMERASES ; RIBOSE ; Rodents ; Time Factors ; X-ray Repair Cross Complementing Protein 1</subject><ispartof>Experimental cell research, 2007-03, Vol.313 (5), p.984-996</ispartof><rights>2007 Elsevier Inc.</rights><rights>Copyright © 2007 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-f50cda4c599a0ddb55eb483d9ab03f818d8b86294002607f9a3b35e949a404573</citedby><cites>FETCH-LOGICAL-c478t-f50cda4c599a0ddb55eb483d9ab03f818d8b86294002607f9a3b35e949a404573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014482706005258$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17276427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20972130$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Hong</creatorcontrib><creatorcontrib>Coyle, Donna L.</creatorcontrib><creatorcontrib>Meyer-Ficca, Mirella L.</creatorcontrib><creatorcontrib>Meyer, Ralph G.</creatorcontrib><creatorcontrib>Jacobson, Elaine L.</creatorcontrib><creatorcontrib>Wang, Zhao-Qi</creatorcontrib><creatorcontrib>Jacobson, Myron K.</creatorcontrib><title>Altered poly(ADP-ribose) metabolism impairs cellular responses to genotoxic stress in a hypomorphic mutant of poly(ADP-ribose) glycohydrolase</title><title>Experimental cell research</title><addtitle>Exp Cell Res</addtitle><description>Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Δ2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl- N′-nitro- N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Δ2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Δ2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ADP</subject><subject>Animals</subject><subject>APOPTOSIS</subject><subject>BIOLOGICAL STRESS</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>DNA Breaks</subject><subject>DNA Damage</subject><subject>DNA DAMAGES</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Enzyme Precursors</subject><subject>Genotoxic stress</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Histones - metabolism</subject><subject>METABOLISM</subject><subject>Methylnitronitrosoguanidine - pharmacology</subject><subject>MICE</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>NAD</subject><subject>NAD - metabolism</subject><subject>NADP</subject><subject>PHOSPHORYLATION</subject><subject>Poly Adenosine Diphosphate Ribose - metabolism</subject><subject>Poly(ADP-ribose)</subject><subject>Poly(ADP-ribose) glycohydrolase</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>POLYMERASES</subject><subject>RIBOSE</subject><subject>Rodents</subject><subject>Time Factors</subject><subject>X-ray Repair Cross Complementing Protein 1</subject><issn>0014-4827</issn><issn>1090-2422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd-K1TAQh4Mo7nH1CQQJCqIXrZM0bdKLvTisf2FBL_Q6pOl0Tw5tU5NUtg_hO9t6DggKXgUm38zwm4-QpwxyBqx6c8wXvLMh5wBVzngOvLxHdgxqyLjg_D7ZATCRCcXlBXkU4xEAlGLVQ3LBJJeV4HJHfu77hAFbOvl-ebV_-yULrvERX9MBk2l87-JA3TAZFyK12PdzbwINGCc_Row0eXqLo0_-zlka0_oRqRupoYdl8oMP02GtD3MyY6K--3fLbb9Yf1ja4HsT8TF50Jk-4pPze0m-vX_39fpjdvP5w6fr_U1mhVQp60qwrRG2rGsDbduUJTZCFW1tGig6xVSrGlXxWgDwCmRXm6IpSqxFbQSIUhaX5MVpro_J6WhdQnuwfhzRJs2hlpwVsFIvT9QU_PcZY9KDi9sNzIh-jloCZ6D4Bj7_Czz6OYxrAs1qUcmSq2qFihNkg48xYKen4AYTFs1Ab0L1Uf8WqjehmnG9Cl27np1Hz82A7Z-es8EVuDoBuN7rh8OwxcHRYuvClqb17r8LfgGiq7PH</recordid><startdate>20070310</startdate><enddate>20070310</enddate><creator>Gao, Hong</creator><creator>Coyle, Donna L.</creator><creator>Meyer-Ficca, Mirella L.</creator><creator>Meyer, Ralph G.</creator><creator>Jacobson, Elaine L.</creator><creator>Wang, Zhao-Qi</creator><creator>Jacobson, Myron K.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20070310</creationdate><title>Altered poly(ADP-ribose) metabolism impairs cellular responses to genotoxic stress in a hypomorphic mutant of poly(ADP-ribose) glycohydrolase</title><author>Gao, Hong ; Coyle, Donna L. ; Meyer-Ficca, Mirella L. ; Meyer, Ralph G. ; Jacobson, Elaine L. ; Wang, Zhao-Qi ; Jacobson, Myron K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-f50cda4c599a0ddb55eb483d9ab03f818d8b86294002607f9a3b35e949a404573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ADP</topic><topic>Animals</topic><topic>APOPTOSIS</topic><topic>BIOLOGICAL STRESS</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>DNA Breaks</topic><topic>DNA Damage</topic><topic>DNA DAMAGES</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Enzyme Precursors</topic><topic>Genotoxic stress</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Histones - metabolism</topic><topic>METABOLISM</topic><topic>Methylnitronitrosoguanidine - pharmacology</topic><topic>MICE</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>NAD</topic><topic>NAD - metabolism</topic><topic>NADP</topic><topic>PHOSPHORYLATION</topic><topic>Poly Adenosine Diphosphate Ribose - metabolism</topic><topic>Poly(ADP-ribose)</topic><topic>Poly(ADP-ribose) glycohydrolase</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>POLYMERASES</topic><topic>RIBOSE</topic><topic>Rodents</topic><topic>Time Factors</topic><topic>X-ray Repair Cross Complementing Protein 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Hong</creatorcontrib><creatorcontrib>Coyle, Donna L.</creatorcontrib><creatorcontrib>Meyer-Ficca, Mirella L.</creatorcontrib><creatorcontrib>Meyer, Ralph G.</creatorcontrib><creatorcontrib>Jacobson, Elaine L.</creatorcontrib><creatorcontrib>Wang, Zhao-Qi</creatorcontrib><creatorcontrib>Jacobson, Myron K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Experimental cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Hong</au><au>Coyle, Donna L.</au><au>Meyer-Ficca, Mirella L.</au><au>Meyer, Ralph G.</au><au>Jacobson, Elaine L.</au><au>Wang, Zhao-Qi</au><au>Jacobson, Myron K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Altered poly(ADP-ribose) metabolism impairs cellular responses to genotoxic stress in a hypomorphic mutant of poly(ADP-ribose) glycohydrolase</atitle><jtitle>Experimental cell research</jtitle><addtitle>Exp Cell Res</addtitle><date>2007-03-10</date><risdate>2007</risdate><volume>313</volume><issue>5</issue><spage>984</spage><epage>996</epage><pages>984-996</pages><issn>0014-4827</issn><eissn>1090-2422</eissn><abstract>Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Δ2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl- N′-nitro- N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Δ2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Δ2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17276427</pmid><doi>10.1016/j.yexcr.2006.12.025</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-4827
ispartof Experimental cell research, 2007-03, Vol.313 (5), p.984-996
issn 0014-4827
1090-2422
language eng
recordid cdi_osti_scitechconnect_20972130
source MEDLINE; Elsevier ScienceDirect Journals
subjects 60 APPLIED LIFE SCIENCES
ADP
Animals
APOPTOSIS
BIOLOGICAL STRESS
Cells, Cultured
Cellular biology
DNA Breaks
DNA Damage
DNA DAMAGES
DNA-Binding Proteins - metabolism
Enzyme Precursors
Genotoxic stress
Glycoside Hydrolases - genetics
Glycoside Hydrolases - metabolism
Histones - metabolism
METABOLISM
Methylnitronitrosoguanidine - pharmacology
MICE
MUTANTS
Mutation
NAD
NAD - metabolism
NADP
PHOSPHORYLATION
Poly Adenosine Diphosphate Ribose - metabolism
Poly(ADP-ribose)
Poly(ADP-ribose) glycohydrolase
Poly(ADP-ribose) polymerase
Poly(ADP-ribose) Polymerases - metabolism
POLYMERASES
RIBOSE
Rodents
Time Factors
X-ray Repair Cross Complementing Protein 1
title Altered poly(ADP-ribose) metabolism impairs cellular responses to genotoxic stress in a hypomorphic mutant of poly(ADP-ribose) glycohydrolase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Altered%20poly(ADP-ribose)%20metabolism%20impairs%20cellular%20responses%20to%20genotoxic%20stress%20in%20a%20hypomorphic%20mutant%20of%20poly(ADP-ribose)%20glycohydrolase&rft.jtitle=Experimental%20cell%20research&rft.au=Gao,%20Hong&rft.date=2007-03-10&rft.volume=313&rft.issue=5&rft.spage=984&rft.epage=996&rft.pages=984-996&rft.issn=0014-4827&rft.eissn=1090-2422&rft_id=info:doi/10.1016/j.yexcr.2006.12.025&rft_dat=%3Cproquest_osti_%3E70210820%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194675286&rft_id=info:pmid/17276427&rft_els_id=S0014482706005258&rfr_iscdi=true