Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model

We report results of quantum Monte Carlo simulations of the Bose-Hubbard model in three dimensions. Critical parameters for the superfluid-to-Mott-insulator transition are determined with significantly higher accuracy than has been done in the past. In particular, the position of the critical point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2007-04, Vol.75 (13), Article 134302
Hauptverfasser: Capogrosso-Sansone, B., Prokof’ev, N. V., Svistunov, B. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 75
creator Capogrosso-Sansone, B.
Prokof’ev, N. V.
Svistunov, B. V.
description We report results of quantum Monte Carlo simulations of the Bose-Hubbard model in three dimensions. Critical parameters for the superfluid-to-Mott-insulator transition are determined with significantly higher accuracy than has been done in the past. In particular, the position of the critical point at filling factor n=1 is found to be at (U/t){sub c}=29.34(2), and the insulating gap {delta} is measured with accuracy of a few percent of the hopping amplitude t. We obtain the effective mass of particle and hole excitations in the insulating state--with explicit demonstration of the emerging particle-hole symmetry and relativistic dispersion law at the transition tip--along with the sound velocity in the strongly correlated superfluid phase. These parameters are the necessary ingredients to perform analytic estimates of the low temperature (T
doi_str_mv 10.1103/PhysRevB.75.134302
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20957788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevB_75_134302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-ebd6014d14f5501dd956cc2cfbb9b1383074714b7caa3fba290d11e36ca1e2a33</originalsourceid><addsrcrecordid>eNo1kE9LAzEQxYMoWKtfwNOC59RMsml2j7aoFRYsouAt5M-sG-luJFmFfnu3VA_DDMN784YfIdfAFgBM3G67fX7Bn9VCyQWIUjB-QmYgJaNcyPfTaWZ1RRlwOCcXOX8yBmVd8hlptp3JWPhgPpLpCzP4Yuww9dHvB9MHl4vYHjZTJUTqQ49DDnEwu2IVM9LNt7Um-WIy4O6SnLVml_Hqr8_J28P963pDm-fHp_VdQ52o5EjR-uWU76Fspw_B-1ouneOutba2ICrBVKmgtMoZI1preM08AIqlM4DcCDEnN8e7MY9BZxdGdJ2Lw4Bu1JzVUqmqmlT8qHIp5pyw1V8p9CbtNTB9oKb_qWkl9ZGa-AXPe2Jb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model</title><source>American Physical Society Journals</source><creator>Capogrosso-Sansone, B. ; Prokof’ev, N. V. ; Svistunov, B. V.</creator><creatorcontrib>Capogrosso-Sansone, B. ; Prokof’ev, N. V. ; Svistunov, B. V.</creatorcontrib><description>We report results of quantum Monte Carlo simulations of the Bose-Hubbard model in three dimensions. Critical parameters for the superfluid-to-Mott-insulator transition are determined with significantly higher accuracy than has been done in the past. In particular, the position of the critical point at filling factor n=1 is found to be at (U/t){sub c}=29.34(2), and the insulating gap {delta} is measured with accuracy of a few percent of the hopping amplitude t. We obtain the effective mass of particle and hole excitations in the insulating state--with explicit demonstration of the emerging particle-hole symmetry and relativistic dispersion law at the transition tip--along with the sound velocity in the strongly correlated superfluid phase. These parameters are the necessary ingredients to perform analytic estimates of the low temperature (T&lt;&lt;{delta}) thermodynamics in macroscopic samples. We present accurate thermodynamic curves, including these for specific heat and entropy, for typical insulating (U/t=40) and superfluid (t/U=0.0385) phases. Our data can serve as a basis for accurate experimental thermometry, and a guide for appropriate initial conditions if one attempts to use interacting bosons in quantum information processing.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.75.134302</identifier><language>eng</language><publisher>United States</publisher><subject>COMPUTERIZED SIMULATION ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; EFFECTIVE MASS ; ENTROPY ; HUBBARD MODEL ; INTERACTING BOSON MODEL ; MATERIALS SCIENCE ; MONTE CARLO METHOD ; PHASE DIAGRAMS ; QUANTUM COMPUTERS ; QUANTUM INFORMATION ; RELATIVISTIC RANGE ; SOUND WAVES ; SPECIFIC HEAT ; SUPERFLUIDITY ; TEMPERATURE RANGE 0065-0273 K ; THERMODYNAMICS ; THREE-DIMENSIONAL CALCULATIONS</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2007-04, Vol.75 (13), Article 134302</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-ebd6014d14f5501dd956cc2cfbb9b1383074714b7caa3fba290d11e36ca1e2a33</citedby><cites>FETCH-LOGICAL-c385t-ebd6014d14f5501dd956cc2cfbb9b1383074714b7caa3fba290d11e36ca1e2a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20957788$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Capogrosso-Sansone, B.</creatorcontrib><creatorcontrib>Prokof’ev, N. V.</creatorcontrib><creatorcontrib>Svistunov, B. V.</creatorcontrib><title>Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model</title><title>Physical review. B, Condensed matter and materials physics</title><description>We report results of quantum Monte Carlo simulations of the Bose-Hubbard model in three dimensions. Critical parameters for the superfluid-to-Mott-insulator transition are determined with significantly higher accuracy than has been done in the past. In particular, the position of the critical point at filling factor n=1 is found to be at (U/t){sub c}=29.34(2), and the insulating gap {delta} is measured with accuracy of a few percent of the hopping amplitude t. We obtain the effective mass of particle and hole excitations in the insulating state--with explicit demonstration of the emerging particle-hole symmetry and relativistic dispersion law at the transition tip--along with the sound velocity in the strongly correlated superfluid phase. These parameters are the necessary ingredients to perform analytic estimates of the low temperature (T&lt;&lt;{delta}) thermodynamics in macroscopic samples. We present accurate thermodynamic curves, including these for specific heat and entropy, for typical insulating (U/t=40) and superfluid (t/U=0.0385) phases. Our data can serve as a basis for accurate experimental thermometry, and a guide for appropriate initial conditions if one attempts to use interacting bosons in quantum information processing.</description><subject>COMPUTERIZED SIMULATION</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>EFFECTIVE MASS</subject><subject>ENTROPY</subject><subject>HUBBARD MODEL</subject><subject>INTERACTING BOSON MODEL</subject><subject>MATERIALS SCIENCE</subject><subject>MONTE CARLO METHOD</subject><subject>PHASE DIAGRAMS</subject><subject>QUANTUM COMPUTERS</subject><subject>QUANTUM INFORMATION</subject><subject>RELATIVISTIC RANGE</subject><subject>SOUND WAVES</subject><subject>SPECIFIC HEAT</subject><subject>SUPERFLUIDITY</subject><subject>TEMPERATURE RANGE 0065-0273 K</subject><subject>THERMODYNAMICS</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNo1kE9LAzEQxYMoWKtfwNOC59RMsml2j7aoFRYsouAt5M-sG-luJFmFfnu3VA_DDMN784YfIdfAFgBM3G67fX7Bn9VCyQWIUjB-QmYgJaNcyPfTaWZ1RRlwOCcXOX8yBmVd8hlptp3JWPhgPpLpCzP4Yuww9dHvB9MHl4vYHjZTJUTqQ49DDnEwu2IVM9LNt7Um-WIy4O6SnLVml_Hqr8_J28P963pDm-fHp_VdQ52o5EjR-uWU76Fspw_B-1ouneOutba2ICrBVKmgtMoZI1preM08AIqlM4DcCDEnN8e7MY9BZxdGdJ2Lw4Bu1JzVUqmqmlT8qHIp5pyw1V8p9CbtNTB9oKb_qWkl9ZGa-AXPe2Jb</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Capogrosso-Sansone, B.</creator><creator>Prokof’ev, N. V.</creator><creator>Svistunov, B. V.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20070401</creationdate><title>Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model</title><author>Capogrosso-Sansone, B. ; Prokof’ev, N. V. ; Svistunov, B. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-ebd6014d14f5501dd956cc2cfbb9b1383074714b7caa3fba290d11e36ca1e2a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>COMPUTERIZED SIMULATION</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>EFFECTIVE MASS</topic><topic>ENTROPY</topic><topic>HUBBARD MODEL</topic><topic>INTERACTING BOSON MODEL</topic><topic>MATERIALS SCIENCE</topic><topic>MONTE CARLO METHOD</topic><topic>PHASE DIAGRAMS</topic><topic>QUANTUM COMPUTERS</topic><topic>QUANTUM INFORMATION</topic><topic>RELATIVISTIC RANGE</topic><topic>SOUND WAVES</topic><topic>SPECIFIC HEAT</topic><topic>SUPERFLUIDITY</topic><topic>TEMPERATURE RANGE 0065-0273 K</topic><topic>THERMODYNAMICS</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capogrosso-Sansone, B.</creatorcontrib><creatorcontrib>Prokof’ev, N. V.</creatorcontrib><creatorcontrib>Svistunov, B. V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capogrosso-Sansone, B.</au><au>Prokof’ev, N. V.</au><au>Svistunov, B. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>75</volume><issue>13</issue><artnum>134302</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We report results of quantum Monte Carlo simulations of the Bose-Hubbard model in three dimensions. Critical parameters for the superfluid-to-Mott-insulator transition are determined with significantly higher accuracy than has been done in the past. In particular, the position of the critical point at filling factor n=1 is found to be at (U/t){sub c}=29.34(2), and the insulating gap {delta} is measured with accuracy of a few percent of the hopping amplitude t. We obtain the effective mass of particle and hole excitations in the insulating state--with explicit demonstration of the emerging particle-hole symmetry and relativistic dispersion law at the transition tip--along with the sound velocity in the strongly correlated superfluid phase. These parameters are the necessary ingredients to perform analytic estimates of the low temperature (T&lt;&lt;{delta}) thermodynamics in macroscopic samples. We present accurate thermodynamic curves, including these for specific heat and entropy, for typical insulating (U/t=40) and superfluid (t/U=0.0385) phases. Our data can serve as a basis for accurate experimental thermometry, and a guide for appropriate initial conditions if one attempts to use interacting bosons in quantum information processing.</abstract><cop>United States</cop><doi>10.1103/PhysRevB.75.134302</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2007-04, Vol.75 (13), Article 134302
issn 1098-0121
1550-235X
language eng
recordid cdi_osti_scitechconnect_20957788
source American Physical Society Journals
subjects COMPUTERIZED SIMULATION
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
EFFECTIVE MASS
ENTROPY
HUBBARD MODEL
INTERACTING BOSON MODEL
MATERIALS SCIENCE
MONTE CARLO METHOD
PHASE DIAGRAMS
QUANTUM COMPUTERS
QUANTUM INFORMATION
RELATIVISTIC RANGE
SOUND WAVES
SPECIFIC HEAT
SUPERFLUIDITY
TEMPERATURE RANGE 0065-0273 K
THERMODYNAMICS
THREE-DIMENSIONAL CALCULATIONS
title Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20diagram%20and%20thermodynamics%20of%20the%20three-dimensional%20Bose-Hubbard%20model&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Capogrosso-Sansone,%20B.&rft.date=2007-04-01&rft.volume=75&rft.issue=13&rft.artnum=134302&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.75.134302&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevB_75_134302%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true