Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model
We report results of quantum Monte Carlo simulations of the Bose-Hubbard model in three dimensions. Critical parameters for the superfluid-to-Mott-insulator transition are determined with significantly higher accuracy than has been done in the past. In particular, the position of the critical point...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2007-04, Vol.75 (13), Article 134302 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 75 |
creator | Capogrosso-Sansone, B. Prokof’ev, N. V. Svistunov, B. V. |
description | We report results of quantum Monte Carlo simulations of the Bose-Hubbard model in three dimensions. Critical parameters for the superfluid-to-Mott-insulator transition are determined with significantly higher accuracy than has been done in the past. In particular, the position of the critical point at filling factor n=1 is found to be at (U/t){sub c}=29.34(2), and the insulating gap {delta} is measured with accuracy of a few percent of the hopping amplitude t. We obtain the effective mass of particle and hole excitations in the insulating state--with explicit demonstration of the emerging particle-hole symmetry and relativistic dispersion law at the transition tip--along with the sound velocity in the strongly correlated superfluid phase. These parameters are the necessary ingredients to perform analytic estimates of the low temperature (T |
doi_str_mv | 10.1103/PhysRevB.75.134302 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20957788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevB_75_134302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-ebd6014d14f5501dd956cc2cfbb9b1383074714b7caa3fba290d11e36ca1e2a33</originalsourceid><addsrcrecordid>eNo1kE9LAzEQxYMoWKtfwNOC59RMsml2j7aoFRYsouAt5M-sG-luJFmFfnu3VA_DDMN784YfIdfAFgBM3G67fX7Bn9VCyQWIUjB-QmYgJaNcyPfTaWZ1RRlwOCcXOX8yBmVd8hlptp3JWPhgPpLpCzP4Yuww9dHvB9MHl4vYHjZTJUTqQ49DDnEwu2IVM9LNt7Um-WIy4O6SnLVml_Hqr8_J28P963pDm-fHp_VdQ52o5EjR-uWU76Fspw_B-1ouneOutba2ICrBVKmgtMoZI1preM08AIqlM4DcCDEnN8e7MY9BZxdGdJ2Lw4Bu1JzVUqmqmlT8qHIp5pyw1V8p9CbtNTB9oKb_qWkl9ZGa-AXPe2Jb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model</title><source>American Physical Society Journals</source><creator>Capogrosso-Sansone, B. ; Prokof’ev, N. V. ; Svistunov, B. V.</creator><creatorcontrib>Capogrosso-Sansone, B. ; Prokof’ev, N. V. ; Svistunov, B. V.</creatorcontrib><description>We report results of quantum Monte Carlo simulations of the Bose-Hubbard model in three dimensions. Critical parameters for the superfluid-to-Mott-insulator transition are determined with significantly higher accuracy than has been done in the past. In particular, the position of the critical point at filling factor n=1 is found to be at (U/t){sub c}=29.34(2), and the insulating gap {delta} is measured with accuracy of a few percent of the hopping amplitude t. We obtain the effective mass of particle and hole excitations in the insulating state--with explicit demonstration of the emerging particle-hole symmetry and relativistic dispersion law at the transition tip--along with the sound velocity in the strongly correlated superfluid phase. These parameters are the necessary ingredients to perform analytic estimates of the low temperature (T<<{delta}) thermodynamics in macroscopic samples. We present accurate thermodynamic curves, including these for specific heat and entropy, for typical insulating (U/t=40) and superfluid (t/U=0.0385) phases. Our data can serve as a basis for accurate experimental thermometry, and a guide for appropriate initial conditions if one attempts to use interacting bosons in quantum information processing.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.75.134302</identifier><language>eng</language><publisher>United States</publisher><subject>COMPUTERIZED SIMULATION ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; EFFECTIVE MASS ; ENTROPY ; HUBBARD MODEL ; INTERACTING BOSON MODEL ; MATERIALS SCIENCE ; MONTE CARLO METHOD ; PHASE DIAGRAMS ; QUANTUM COMPUTERS ; QUANTUM INFORMATION ; RELATIVISTIC RANGE ; SOUND WAVES ; SPECIFIC HEAT ; SUPERFLUIDITY ; TEMPERATURE RANGE 0065-0273 K ; THERMODYNAMICS ; THREE-DIMENSIONAL CALCULATIONS</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2007-04, Vol.75 (13), Article 134302</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-ebd6014d14f5501dd956cc2cfbb9b1383074714b7caa3fba290d11e36ca1e2a33</citedby><cites>FETCH-LOGICAL-c385t-ebd6014d14f5501dd956cc2cfbb9b1383074714b7caa3fba290d11e36ca1e2a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20957788$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Capogrosso-Sansone, B.</creatorcontrib><creatorcontrib>Prokof’ev, N. V.</creatorcontrib><creatorcontrib>Svistunov, B. V.</creatorcontrib><title>Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model</title><title>Physical review. B, Condensed matter and materials physics</title><description>We report results of quantum Monte Carlo simulations of the Bose-Hubbard model in three dimensions. Critical parameters for the superfluid-to-Mott-insulator transition are determined with significantly higher accuracy than has been done in the past. In particular, the position of the critical point at filling factor n=1 is found to be at (U/t){sub c}=29.34(2), and the insulating gap {delta} is measured with accuracy of a few percent of the hopping amplitude t. We obtain the effective mass of particle and hole excitations in the insulating state--with explicit demonstration of the emerging particle-hole symmetry and relativistic dispersion law at the transition tip--along with the sound velocity in the strongly correlated superfluid phase. These parameters are the necessary ingredients to perform analytic estimates of the low temperature (T<<{delta}) thermodynamics in macroscopic samples. We present accurate thermodynamic curves, including these for specific heat and entropy, for typical insulating (U/t=40) and superfluid (t/U=0.0385) phases. Our data can serve as a basis for accurate experimental thermometry, and a guide for appropriate initial conditions if one attempts to use interacting bosons in quantum information processing.</description><subject>COMPUTERIZED SIMULATION</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>EFFECTIVE MASS</subject><subject>ENTROPY</subject><subject>HUBBARD MODEL</subject><subject>INTERACTING BOSON MODEL</subject><subject>MATERIALS SCIENCE</subject><subject>MONTE CARLO METHOD</subject><subject>PHASE DIAGRAMS</subject><subject>QUANTUM COMPUTERS</subject><subject>QUANTUM INFORMATION</subject><subject>RELATIVISTIC RANGE</subject><subject>SOUND WAVES</subject><subject>SPECIFIC HEAT</subject><subject>SUPERFLUIDITY</subject><subject>TEMPERATURE RANGE 0065-0273 K</subject><subject>THERMODYNAMICS</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNo1kE9LAzEQxYMoWKtfwNOC59RMsml2j7aoFRYsouAt5M-sG-luJFmFfnu3VA_DDMN784YfIdfAFgBM3G67fX7Bn9VCyQWIUjB-QmYgJaNcyPfTaWZ1RRlwOCcXOX8yBmVd8hlptp3JWPhgPpLpCzP4Yuww9dHvB9MHl4vYHjZTJUTqQ49DDnEwu2IVM9LNt7Um-WIy4O6SnLVml_Hqr8_J28P963pDm-fHp_VdQ52o5EjR-uWU76Fspw_B-1ouneOutba2ICrBVKmgtMoZI1preM08AIqlM4DcCDEnN8e7MY9BZxdGdJ2Lw4Bu1JzVUqmqmlT8qHIp5pyw1V8p9CbtNTB9oKb_qWkl9ZGa-AXPe2Jb</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Capogrosso-Sansone, B.</creator><creator>Prokof’ev, N. V.</creator><creator>Svistunov, B. V.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20070401</creationdate><title>Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model</title><author>Capogrosso-Sansone, B. ; Prokof’ev, N. V. ; Svistunov, B. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-ebd6014d14f5501dd956cc2cfbb9b1383074714b7caa3fba290d11e36ca1e2a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>COMPUTERIZED SIMULATION</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>EFFECTIVE MASS</topic><topic>ENTROPY</topic><topic>HUBBARD MODEL</topic><topic>INTERACTING BOSON MODEL</topic><topic>MATERIALS SCIENCE</topic><topic>MONTE CARLO METHOD</topic><topic>PHASE DIAGRAMS</topic><topic>QUANTUM COMPUTERS</topic><topic>QUANTUM INFORMATION</topic><topic>RELATIVISTIC RANGE</topic><topic>SOUND WAVES</topic><topic>SPECIFIC HEAT</topic><topic>SUPERFLUIDITY</topic><topic>TEMPERATURE RANGE 0065-0273 K</topic><topic>THERMODYNAMICS</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capogrosso-Sansone, B.</creatorcontrib><creatorcontrib>Prokof’ev, N. V.</creatorcontrib><creatorcontrib>Svistunov, B. V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capogrosso-Sansone, B.</au><au>Prokof’ev, N. V.</au><au>Svistunov, B. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>75</volume><issue>13</issue><artnum>134302</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We report results of quantum Monte Carlo simulations of the Bose-Hubbard model in three dimensions. Critical parameters for the superfluid-to-Mott-insulator transition are determined with significantly higher accuracy than has been done in the past. In particular, the position of the critical point at filling factor n=1 is found to be at (U/t){sub c}=29.34(2), and the insulating gap {delta} is measured with accuracy of a few percent of the hopping amplitude t. We obtain the effective mass of particle and hole excitations in the insulating state--with explicit demonstration of the emerging particle-hole symmetry and relativistic dispersion law at the transition tip--along with the sound velocity in the strongly correlated superfluid phase. These parameters are the necessary ingredients to perform analytic estimates of the low temperature (T<<{delta}) thermodynamics in macroscopic samples. We present accurate thermodynamic curves, including these for specific heat and entropy, for typical insulating (U/t=40) and superfluid (t/U=0.0385) phases. Our data can serve as a basis for accurate experimental thermometry, and a guide for appropriate initial conditions if one attempts to use interacting bosons in quantum information processing.</abstract><cop>United States</cop><doi>10.1103/PhysRevB.75.134302</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2007-04, Vol.75 (13), Article 134302 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_osti_scitechconnect_20957788 |
source | American Physical Society Journals |
subjects | COMPUTERIZED SIMULATION CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY EFFECTIVE MASS ENTROPY HUBBARD MODEL INTERACTING BOSON MODEL MATERIALS SCIENCE MONTE CARLO METHOD PHASE DIAGRAMS QUANTUM COMPUTERS QUANTUM INFORMATION RELATIVISTIC RANGE SOUND WAVES SPECIFIC HEAT SUPERFLUIDITY TEMPERATURE RANGE 0065-0273 K THERMODYNAMICS THREE-DIMENSIONAL CALCULATIONS |
title | Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20diagram%20and%20thermodynamics%20of%20the%20three-dimensional%20Bose-Hubbard%20model&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Capogrosso-Sansone,%20B.&rft.date=2007-04-01&rft.volume=75&rft.issue=13&rft.artnum=134302&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.75.134302&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevB_75_134302%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |