Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability
Linear theory of the ablative Rayleigh-Taylor instability in anisotropic diffusive materials is presented. This analysis indicates that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. In the context of inertial confinement fu...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2007-06, Vol.98 (24), p.245001-245001, Article 245001 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 245001 |
---|---|
container_issue | 24 |
container_start_page | 245001 |
container_title | Physical review letters |
container_volume | 98 |
creator | Masse, L |
description | Linear theory of the ablative Rayleigh-Taylor instability in anisotropic diffusive materials is presented. This analysis indicates that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. In the context of inertial confinement fusion, it is shown that anisotropic diffusion can be achieved using a laminated ablator made of successive layers of different diffusive properties. Numerical simulations confirm the theoretical predictions and indeed exhibit a significant stabilization of the ablation front for laminated ablators. |
doi_str_mv | 10.1103/physrevlett.98.245001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20953290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68132646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-33977426ebff20a31412809a964e7d7c070e91a0536766fbebd2911adf5334ce3</originalsourceid><addsrcrecordid>eNpFkFFLHDEQgEOx1Kv2J1QCgm97TpLdZPMoorZwULH6HLLZiRfZ25yb3MH5603Zg8LADMM3M8xHyE8GS8ZAXG_XhzThfsCcl7pd8roBYF_IgoHSlWKsPiELAMEqDaBOyfeU3qAQXLbfyClTUimtYEHM32y7MISPML5S9B5dptFTO4YU8xS3wdG8xmljB9oH73cpxJGWKE1qu8HmsEf6ZA8Dhtd19VyKONEwpnlrPpyTr94OCX8c8xl5ub97vv1Vrf48_L69WVWubkSuhNBK1Vxi5z0HK1jNeAvaalmj6pUDBaiZhUZIJaXvsOu5Zsz2vhGidijOyOW8N6YcTHIho1u7OI7lIcNBN4JrKNTVTG2n-L7DlM0mJIfDYEeMu2RkywSXtSxgM4Nuiql49mY7hY2dDoaB-effPBb_T7hfFf9Gt2b2X-Yujgd23Qb7_1NH4eITeoeFSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68132646</pqid></control><display><type>article</type><title>Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability</title><source>American Physical Society Journals</source><creator>Masse, L</creator><creatorcontrib>Masse, L</creatorcontrib><description>Linear theory of the ablative Rayleigh-Taylor instability in anisotropic diffusive materials is presented. This analysis indicates that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. In the context of inertial confinement fusion, it is shown that anisotropic diffusion can be achieved using a laminated ablator made of successive layers of different diffusive properties. Numerical simulations confirm the theoretical predictions and indeed exhibit a significant stabilization of the ablation front for laminated ablators.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.98.245001</identifier><identifier>PMID: 17677970</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ABLATION ; ANISOTROPY ; INERTIAL CONFINEMENT ; RAYLEIGH-TAYLOR INSTABILITY ; SIMULATION ; STABILIZATION ; THERMAL DIFFUSION</subject><ispartof>Physical review letters, 2007-06, Vol.98 (24), p.245001-245001, Article 245001</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-33977426ebff20a31412809a964e7d7c070e91a0536766fbebd2911adf5334ce3</citedby><cites>FETCH-LOGICAL-c453t-33977426ebff20a31412809a964e7d7c070e91a0536766fbebd2911adf5334ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,2877,2878,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17677970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20953290$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Masse, L</creatorcontrib><title>Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Linear theory of the ablative Rayleigh-Taylor instability in anisotropic diffusive materials is presented. This analysis indicates that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. In the context of inertial confinement fusion, it is shown that anisotropic diffusion can be achieved using a laminated ablator made of successive layers of different diffusive properties. Numerical simulations confirm the theoretical predictions and indeed exhibit a significant stabilization of the ablation front for laminated ablators.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ABLATION</subject><subject>ANISOTROPY</subject><subject>INERTIAL CONFINEMENT</subject><subject>RAYLEIGH-TAYLOR INSTABILITY</subject><subject>SIMULATION</subject><subject>STABILIZATION</subject><subject>THERMAL DIFFUSION</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkFFLHDEQgEOx1Kv2J1QCgm97TpLdZPMoorZwULH6HLLZiRfZ25yb3MH5603Zg8LADMM3M8xHyE8GS8ZAXG_XhzThfsCcl7pd8roBYF_IgoHSlWKsPiELAMEqDaBOyfeU3qAQXLbfyClTUimtYEHM32y7MISPML5S9B5dptFTO4YU8xS3wdG8xmljB9oH73cpxJGWKE1qu8HmsEf6ZA8Dhtd19VyKONEwpnlrPpyTr94OCX8c8xl5ub97vv1Vrf48_L69WVWubkSuhNBK1Vxi5z0HK1jNeAvaalmj6pUDBaiZhUZIJaXvsOu5Zsz2vhGidijOyOW8N6YcTHIho1u7OI7lIcNBN4JrKNTVTG2n-L7DlM0mJIfDYEeMu2RkywSXtSxgM4Nuiql49mY7hY2dDoaB-effPBb_T7hfFf9Gt2b2X-Yujgd23Qb7_1NH4eITeoeFSg</recordid><startdate>20070615</startdate><enddate>20070615</enddate><creator>Masse, L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20070615</creationdate><title>Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability</title><author>Masse, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-33977426ebff20a31412809a964e7d7c070e91a0536766fbebd2911adf5334ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ABLATION</topic><topic>ANISOTROPY</topic><topic>INERTIAL CONFINEMENT</topic><topic>RAYLEIGH-TAYLOR INSTABILITY</topic><topic>SIMULATION</topic><topic>STABILIZATION</topic><topic>THERMAL DIFFUSION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masse, L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masse, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2007-06-15</date><risdate>2007</risdate><volume>98</volume><issue>24</issue><spage>245001</spage><epage>245001</epage><pages>245001-245001</pages><artnum>245001</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Linear theory of the ablative Rayleigh-Taylor instability in anisotropic diffusive materials is presented. This analysis indicates that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. In the context of inertial confinement fusion, it is shown that anisotropic diffusion can be achieved using a laminated ablator made of successive layers of different diffusive properties. Numerical simulations confirm the theoretical predictions and indeed exhibit a significant stabilization of the ablation front for laminated ablators.</abstract><cop>United States</cop><pmid>17677970</pmid><doi>10.1103/physrevlett.98.245001</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2007-06, Vol.98 (24), p.245001-245001, Article 245001 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_20953290 |
source | American Physical Society Journals |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ABLATION ANISOTROPY INERTIAL CONFINEMENT RAYLEIGH-TAYLOR INSTABILITY SIMULATION STABILIZATION THERMAL DIFFUSION |
title | Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20effect%20of%20anisotropic%20thermal%20diffusion%20on%20the%20ablative%20Rayleigh-Taylor%20instability&rft.jtitle=Physical%20review%20letters&rft.au=Masse,%20L&rft.date=2007-06-15&rft.volume=98&rft.issue=24&rft.spage=245001&rft.epage=245001&rft.pages=245001-245001&rft.artnum=245001&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.98.245001&rft_dat=%3Cproquest_osti_%3E68132646%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68132646&rft_id=info:pmid/17677970&rfr_iscdi=true |