Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability

Linear theory of the ablative Rayleigh-Taylor instability in anisotropic diffusive materials is presented. This analysis indicates that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. In the context of inertial confinement fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2007-06, Vol.98 (24), p.245001-245001, Article 245001
1. Verfasser: Masse, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245001
container_issue 24
container_start_page 245001
container_title Physical review letters
container_volume 98
creator Masse, L
description Linear theory of the ablative Rayleigh-Taylor instability in anisotropic diffusive materials is presented. This analysis indicates that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. In the context of inertial confinement fusion, it is shown that anisotropic diffusion can be achieved using a laminated ablator made of successive layers of different diffusive properties. Numerical simulations confirm the theoretical predictions and indeed exhibit a significant stabilization of the ablation front for laminated ablators.
doi_str_mv 10.1103/physrevlett.98.245001
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20953290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68132646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-33977426ebff20a31412809a964e7d7c070e91a0536766fbebd2911adf5334ce3</originalsourceid><addsrcrecordid>eNpFkFFLHDEQgEOx1Kv2J1QCgm97TpLdZPMoorZwULH6HLLZiRfZ25yb3MH5603Zg8LADMM3M8xHyE8GS8ZAXG_XhzThfsCcl7pd8roBYF_IgoHSlWKsPiELAMEqDaBOyfeU3qAQXLbfyClTUimtYEHM32y7MISPML5S9B5dptFTO4YU8xS3wdG8xmljB9oH73cpxJGWKE1qu8HmsEf6ZA8Dhtd19VyKONEwpnlrPpyTr94OCX8c8xl5ub97vv1Vrf48_L69WVWubkSuhNBK1Vxi5z0HK1jNeAvaalmj6pUDBaiZhUZIJaXvsOu5Zsz2vhGidijOyOW8N6YcTHIho1u7OI7lIcNBN4JrKNTVTG2n-L7DlM0mJIfDYEeMu2RkywSXtSxgM4Nuiql49mY7hY2dDoaB-effPBb_T7hfFf9Gt2b2X-Yujgd23Qb7_1NH4eITeoeFSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68132646</pqid></control><display><type>article</type><title>Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability</title><source>American Physical Society Journals</source><creator>Masse, L</creator><creatorcontrib>Masse, L</creatorcontrib><description>Linear theory of the ablative Rayleigh-Taylor instability in anisotropic diffusive materials is presented. This analysis indicates that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. In the context of inertial confinement fusion, it is shown that anisotropic diffusion can be achieved using a laminated ablator made of successive layers of different diffusive properties. Numerical simulations confirm the theoretical predictions and indeed exhibit a significant stabilization of the ablation front for laminated ablators.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.98.245001</identifier><identifier>PMID: 17677970</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ABLATION ; ANISOTROPY ; INERTIAL CONFINEMENT ; RAYLEIGH-TAYLOR INSTABILITY ; SIMULATION ; STABILIZATION ; THERMAL DIFFUSION</subject><ispartof>Physical review letters, 2007-06, Vol.98 (24), p.245001-245001, Article 245001</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-33977426ebff20a31412809a964e7d7c070e91a0536766fbebd2911adf5334ce3</citedby><cites>FETCH-LOGICAL-c453t-33977426ebff20a31412809a964e7d7c070e91a0536766fbebd2911adf5334ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,2877,2878,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17677970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20953290$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Masse, L</creatorcontrib><title>Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Linear theory of the ablative Rayleigh-Taylor instability in anisotropic diffusive materials is presented. This analysis indicates that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. In the context of inertial confinement fusion, it is shown that anisotropic diffusion can be achieved using a laminated ablator made of successive layers of different diffusive properties. Numerical simulations confirm the theoretical predictions and indeed exhibit a significant stabilization of the ablation front for laminated ablators.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ABLATION</subject><subject>ANISOTROPY</subject><subject>INERTIAL CONFINEMENT</subject><subject>RAYLEIGH-TAYLOR INSTABILITY</subject><subject>SIMULATION</subject><subject>STABILIZATION</subject><subject>THERMAL DIFFUSION</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkFFLHDEQgEOx1Kv2J1QCgm97TpLdZPMoorZwULH6HLLZiRfZ25yb3MH5603Zg8LADMM3M8xHyE8GS8ZAXG_XhzThfsCcl7pd8roBYF_IgoHSlWKsPiELAMEqDaBOyfeU3qAQXLbfyClTUimtYEHM32y7MISPML5S9B5dptFTO4YU8xS3wdG8xmljB9oH73cpxJGWKE1qu8HmsEf6ZA8Dhtd19VyKONEwpnlrPpyTr94OCX8c8xl5ub97vv1Vrf48_L69WVWubkSuhNBK1Vxi5z0HK1jNeAvaalmj6pUDBaiZhUZIJaXvsOu5Zsz2vhGidijOyOW8N6YcTHIho1u7OI7lIcNBN4JrKNTVTG2n-L7DlM0mJIfDYEeMu2RkywSXtSxgM4Nuiql49mY7hY2dDoaB-effPBb_T7hfFf9Gt2b2X-Yujgd23Qb7_1NH4eITeoeFSg</recordid><startdate>20070615</startdate><enddate>20070615</enddate><creator>Masse, L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20070615</creationdate><title>Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability</title><author>Masse, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-33977426ebff20a31412809a964e7d7c070e91a0536766fbebd2911adf5334ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ABLATION</topic><topic>ANISOTROPY</topic><topic>INERTIAL CONFINEMENT</topic><topic>RAYLEIGH-TAYLOR INSTABILITY</topic><topic>SIMULATION</topic><topic>STABILIZATION</topic><topic>THERMAL DIFFUSION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masse, L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masse, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2007-06-15</date><risdate>2007</risdate><volume>98</volume><issue>24</issue><spage>245001</spage><epage>245001</epage><pages>245001-245001</pages><artnum>245001</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Linear theory of the ablative Rayleigh-Taylor instability in anisotropic diffusive materials is presented. This analysis indicates that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. In the context of inertial confinement fusion, it is shown that anisotropic diffusion can be achieved using a laminated ablator made of successive layers of different diffusive properties. Numerical simulations confirm the theoretical predictions and indeed exhibit a significant stabilization of the ablation front for laminated ablators.</abstract><cop>United States</cop><pmid>17677970</pmid><doi>10.1103/physrevlett.98.245001</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2007-06, Vol.98 (24), p.245001-245001, Article 245001
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_20953290
source American Physical Society Journals
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
ABLATION
ANISOTROPY
INERTIAL CONFINEMENT
RAYLEIGH-TAYLOR INSTABILITY
SIMULATION
STABILIZATION
THERMAL DIFFUSION
title Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20effect%20of%20anisotropic%20thermal%20diffusion%20on%20the%20ablative%20Rayleigh-Taylor%20instability&rft.jtitle=Physical%20review%20letters&rft.au=Masse,%20L&rft.date=2007-06-15&rft.volume=98&rft.issue=24&rft.spage=245001&rft.epage=245001&rft.pages=245001-245001&rft.artnum=245001&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.98.245001&rft_dat=%3Cproquest_osti_%3E68132646%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68132646&rft_id=info:pmid/17677970&rfr_iscdi=true