Averaging spherically symmetric spacetimes in general relativity

We discuss the averaging problem in general relativity, using the form of the macroscopic gravity equations in the case of spherical symmetry in volume preserving coordinates. In particular, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles and fields Particles and fields, 2006-10, Vol.74 (8), Article 087301
Hauptverfasser: Coley, A. A., Pelavas, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. D, Particles and fields
container_volume 74
creator Coley, A. A.
Pelavas, N.
description We discuss the averaging problem in general relativity, using the form of the macroscopic gravity equations in the case of spherical symmetry in volume preserving coordinates. In particular, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. On cosmological scales, the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background is found to be of the form of a spatial curvature. On astrophysical scales the correlation tensor can be interpreted as the sum of a spatial curvature and an anisotropic fluid. We briefly discuss the physical implications of these results.
doi_str_mv 10.1103/PhysRevD.74.087301
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20871472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_74_087301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-5d710d798ed12fca16dace338c777f6e9b5e5add62ec8f2ddbdede83660e75543</originalsourceid><addsrcrecordid>eNo1kE1LAzEQhoMoWKt_wNOC56352GSyN0v9hIIieg5pMttGdrclCQv7711pPc3My8ML8xByy-iCMSruP3Zj-sThcQHVgmoQlJ2RGZOSllwofX7aoa71JblK6YdSwRXAjDwsB4x2G_ptkQ47jMHZth2LNHYd5umaUuswhw5TEfpii_2Et0XE1uYwhDxek4vGtglvTnNOvp-fvlav5fr95W21XJdOVCyX0gOjHmqNnvHGWab81CuEdgDQKKw3EqX1XnF0uuHebzx61EIpiiBlJebk7ti7TzmY5EJGt3P7vkeXDZ9-ZhXwieJHysV9ShEbc4ihs3E0jJo_U-bflIHKHE2JX-YwX8k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Averaging spherically symmetric spacetimes in general relativity</title><source>American Physical Society Journals</source><creator>Coley, A. A. ; Pelavas, N.</creator><creatorcontrib>Coley, A. A. ; Pelavas, N.</creatorcontrib><description>We discuss the averaging problem in general relativity, using the form of the macroscopic gravity equations in the case of spherical symmetry in volume preserving coordinates. In particular, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. On cosmological scales, the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background is found to be of the form of a spatial curvature. On astrophysical scales the correlation tensor can be interpreted as the sum of a spatial curvature and an anisotropic fluid. We briefly discuss the physical implications of these results.</description><identifier>ISSN: 1550-7998</identifier><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1550-2368</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.74.087301</identifier><language>eng</language><publisher>United States</publisher><subject>ANISOTROPY ; COORDINATES ; CORRELATIONS ; COSMOLOGY ; DISTRIBUTION ; FIELD EQUATIONS ; FLUIDS ; GENERAL RELATIVITY THEORY ; GRAVITATION ; GRAVITATIONAL FIELDS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; SPACE-TIME ; SPHERICAL CONFIGURATION ; SYMMETRY ; TENSORS</subject><ispartof>Physical review. D, Particles and fields, 2006-10, Vol.74 (8), Article 087301</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-5d710d798ed12fca16dace338c777f6e9b5e5add62ec8f2ddbdede83660e75543</citedby><cites>FETCH-LOGICAL-c341t-5d710d798ed12fca16dace338c777f6e9b5e5add62ec8f2ddbdede83660e75543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20871472$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Coley, A. A.</creatorcontrib><creatorcontrib>Pelavas, N.</creatorcontrib><title>Averaging spherically symmetric spacetimes in general relativity</title><title>Physical review. D, Particles and fields</title><description>We discuss the averaging problem in general relativity, using the form of the macroscopic gravity equations in the case of spherical symmetry in volume preserving coordinates. In particular, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. On cosmological scales, the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background is found to be of the form of a spatial curvature. On astrophysical scales the correlation tensor can be interpreted as the sum of a spatial curvature and an anisotropic fluid. We briefly discuss the physical implications of these results.</description><subject>ANISOTROPY</subject><subject>COORDINATES</subject><subject>CORRELATIONS</subject><subject>COSMOLOGY</subject><subject>DISTRIBUTION</subject><subject>FIELD EQUATIONS</subject><subject>FLUIDS</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>GRAVITATION</subject><subject>GRAVITATIONAL FIELDS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>SPACE-TIME</subject><subject>SPHERICAL CONFIGURATION</subject><subject>SYMMETRY</subject><subject>TENSORS</subject><issn>1550-7998</issn><issn>0556-2821</issn><issn>1550-2368</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEQhoMoWKt_wNOC56352GSyN0v9hIIieg5pMttGdrclCQv7711pPc3My8ML8xByy-iCMSruP3Zj-sThcQHVgmoQlJ2RGZOSllwofX7aoa71JblK6YdSwRXAjDwsB4x2G_ptkQ47jMHZth2LNHYd5umaUuswhw5TEfpii_2Et0XE1uYwhDxek4vGtglvTnNOvp-fvlav5fr95W21XJdOVCyX0gOjHmqNnvHGWab81CuEdgDQKKw3EqX1XnF0uuHebzx61EIpiiBlJebk7ti7TzmY5EJGt3P7vkeXDZ9-ZhXwieJHysV9ShEbc4ihs3E0jJo_U-bflIHKHE2JX-YwX8k</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Coley, A. A.</creator><creator>Pelavas, N.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20061001</creationdate><title>Averaging spherically symmetric spacetimes in general relativity</title><author>Coley, A. A. ; Pelavas, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-5d710d798ed12fca16dace338c777f6e9b5e5add62ec8f2ddbdede83660e75543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ANISOTROPY</topic><topic>COORDINATES</topic><topic>CORRELATIONS</topic><topic>COSMOLOGY</topic><topic>DISTRIBUTION</topic><topic>FIELD EQUATIONS</topic><topic>FLUIDS</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>GRAVITATION</topic><topic>GRAVITATIONAL FIELDS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>SPACE-TIME</topic><topic>SPHERICAL CONFIGURATION</topic><topic>SYMMETRY</topic><topic>TENSORS</topic><toplevel>online_resources</toplevel><creatorcontrib>Coley, A. A.</creatorcontrib><creatorcontrib>Pelavas, N.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coley, A. A.</au><au>Pelavas, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Averaging spherically symmetric spacetimes in general relativity</atitle><jtitle>Physical review. D, Particles and fields</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>74</volume><issue>8</issue><artnum>087301</artnum><issn>1550-7998</issn><issn>0556-2821</issn><eissn>1550-2368</eissn><eissn>1089-4918</eissn><abstract>We discuss the averaging problem in general relativity, using the form of the macroscopic gravity equations in the case of spherical symmetry in volume preserving coordinates. In particular, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. On cosmological scales, the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background is found to be of the form of a spatial curvature. On astrophysical scales the correlation tensor can be interpreted as the sum of a spatial curvature and an anisotropic fluid. We briefly discuss the physical implications of these results.</abstract><cop>United States</cop><doi>10.1103/PhysRevD.74.087301</doi></addata></record>
fulltext fulltext
identifier ISSN: 1550-7998
ispartof Physical review. D, Particles and fields, 2006-10, Vol.74 (8), Article 087301
issn 1550-7998
0556-2821
1550-2368
1089-4918
language eng
recordid cdi_osti_scitechconnect_20871472
source American Physical Society Journals
subjects ANISOTROPY
COORDINATES
CORRELATIONS
COSMOLOGY
DISTRIBUTION
FIELD EQUATIONS
FLUIDS
GENERAL RELATIVITY THEORY
GRAVITATION
GRAVITATIONAL FIELDS
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
SPACE-TIME
SPHERICAL CONFIGURATION
SYMMETRY
TENSORS
title Averaging spherically symmetric spacetimes in general relativity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Averaging%20spherically%20symmetric%20spacetimes%20in%20general%20relativity&rft.jtitle=Physical%20review.%20D,%20Particles%20and%20fields&rft.au=Coley,%20A.%20A.&rft.date=2006-10-01&rft.volume=74&rft.issue=8&rft.artnum=087301&rft.issn=1550-7998&rft.eissn=1550-2368&rft_id=info:doi/10.1103/PhysRevD.74.087301&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevD_74_087301%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true