Averaging spherically symmetric spacetimes in general relativity
We discuss the averaging problem in general relativity, using the form of the macroscopic gravity equations in the case of spherical symmetry in volume preserving coordinates. In particular, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomog...
Gespeichert in:
Veröffentlicht in: | Physical review. D, Particles and fields Particles and fields, 2006-10, Vol.74 (8), Article 087301 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physical review. D, Particles and fields |
container_volume | 74 |
creator | Coley, A. A. Pelavas, N. |
description | We discuss the averaging problem in general relativity, using the form of the macroscopic gravity equations in the case of spherical symmetry in volume preserving coordinates. In particular, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. On cosmological scales, the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background is found to be of the form of a spatial curvature. On astrophysical scales the correlation tensor can be interpreted as the sum of a spatial curvature and an anisotropic fluid. We briefly discuss the physical implications of these results. |
doi_str_mv | 10.1103/PhysRevD.74.087301 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20871472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_74_087301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-5d710d798ed12fca16dace338c777f6e9b5e5add62ec8f2ddbdede83660e75543</originalsourceid><addsrcrecordid>eNo1kE1LAzEQhoMoWKt_wNOC56352GSyN0v9hIIieg5pMttGdrclCQv7711pPc3My8ML8xByy-iCMSruP3Zj-sThcQHVgmoQlJ2RGZOSllwofX7aoa71JblK6YdSwRXAjDwsB4x2G_ptkQ47jMHZth2LNHYd5umaUuswhw5TEfpii_2Et0XE1uYwhDxek4vGtglvTnNOvp-fvlav5fr95W21XJdOVCyX0gOjHmqNnvHGWab81CuEdgDQKKw3EqX1XnF0uuHebzx61EIpiiBlJebk7ti7TzmY5EJGt3P7vkeXDZ9-ZhXwieJHysV9ShEbc4ihs3E0jJo_U-bflIHKHE2JX-YwX8k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Averaging spherically symmetric spacetimes in general relativity</title><source>American Physical Society Journals</source><creator>Coley, A. A. ; Pelavas, N.</creator><creatorcontrib>Coley, A. A. ; Pelavas, N.</creatorcontrib><description>We discuss the averaging problem in general relativity, using the form of the macroscopic gravity equations in the case of spherical symmetry in volume preserving coordinates. In particular, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. On cosmological scales, the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background is found to be of the form of a spatial curvature. On astrophysical scales the correlation tensor can be interpreted as the sum of a spatial curvature and an anisotropic fluid. We briefly discuss the physical implications of these results.</description><identifier>ISSN: 1550-7998</identifier><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1550-2368</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.74.087301</identifier><language>eng</language><publisher>United States</publisher><subject>ANISOTROPY ; COORDINATES ; CORRELATIONS ; COSMOLOGY ; DISTRIBUTION ; FIELD EQUATIONS ; FLUIDS ; GENERAL RELATIVITY THEORY ; GRAVITATION ; GRAVITATIONAL FIELDS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; SPACE-TIME ; SPHERICAL CONFIGURATION ; SYMMETRY ; TENSORS</subject><ispartof>Physical review. D, Particles and fields, 2006-10, Vol.74 (8), Article 087301</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-5d710d798ed12fca16dace338c777f6e9b5e5add62ec8f2ddbdede83660e75543</citedby><cites>FETCH-LOGICAL-c341t-5d710d798ed12fca16dace338c777f6e9b5e5add62ec8f2ddbdede83660e75543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20871472$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Coley, A. A.</creatorcontrib><creatorcontrib>Pelavas, N.</creatorcontrib><title>Averaging spherically symmetric spacetimes in general relativity</title><title>Physical review. D, Particles and fields</title><description>We discuss the averaging problem in general relativity, using the form of the macroscopic gravity equations in the case of spherical symmetry in volume preserving coordinates. In particular, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. On cosmological scales, the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background is found to be of the form of a spatial curvature. On astrophysical scales the correlation tensor can be interpreted as the sum of a spatial curvature and an anisotropic fluid. We briefly discuss the physical implications of these results.</description><subject>ANISOTROPY</subject><subject>COORDINATES</subject><subject>CORRELATIONS</subject><subject>COSMOLOGY</subject><subject>DISTRIBUTION</subject><subject>FIELD EQUATIONS</subject><subject>FLUIDS</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>GRAVITATION</subject><subject>GRAVITATIONAL FIELDS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>SPACE-TIME</subject><subject>SPHERICAL CONFIGURATION</subject><subject>SYMMETRY</subject><subject>TENSORS</subject><issn>1550-7998</issn><issn>0556-2821</issn><issn>1550-2368</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEQhoMoWKt_wNOC56352GSyN0v9hIIieg5pMttGdrclCQv7711pPc3My8ML8xByy-iCMSruP3Zj-sThcQHVgmoQlJ2RGZOSllwofX7aoa71JblK6YdSwRXAjDwsB4x2G_ptkQ47jMHZth2LNHYd5umaUuswhw5TEfpii_2Et0XE1uYwhDxek4vGtglvTnNOvp-fvlav5fr95W21XJdOVCyX0gOjHmqNnvHGWab81CuEdgDQKKw3EqX1XnF0uuHebzx61EIpiiBlJebk7ti7TzmY5EJGt3P7vkeXDZ9-ZhXwieJHysV9ShEbc4ihs3E0jJo_U-bflIHKHE2JX-YwX8k</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Coley, A. A.</creator><creator>Pelavas, N.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20061001</creationdate><title>Averaging spherically symmetric spacetimes in general relativity</title><author>Coley, A. A. ; Pelavas, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-5d710d798ed12fca16dace338c777f6e9b5e5add62ec8f2ddbdede83660e75543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ANISOTROPY</topic><topic>COORDINATES</topic><topic>CORRELATIONS</topic><topic>COSMOLOGY</topic><topic>DISTRIBUTION</topic><topic>FIELD EQUATIONS</topic><topic>FLUIDS</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>GRAVITATION</topic><topic>GRAVITATIONAL FIELDS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>SPACE-TIME</topic><topic>SPHERICAL CONFIGURATION</topic><topic>SYMMETRY</topic><topic>TENSORS</topic><toplevel>online_resources</toplevel><creatorcontrib>Coley, A. A.</creatorcontrib><creatorcontrib>Pelavas, N.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coley, A. A.</au><au>Pelavas, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Averaging spherically symmetric spacetimes in general relativity</atitle><jtitle>Physical review. D, Particles and fields</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>74</volume><issue>8</issue><artnum>087301</artnum><issn>1550-7998</issn><issn>0556-2821</issn><eissn>1550-2368</eissn><eissn>1089-4918</eissn><abstract>We discuss the averaging problem in general relativity, using the form of the macroscopic gravity equations in the case of spherical symmetry in volume preserving coordinates. In particular, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. On cosmological scales, the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background is found to be of the form of a spatial curvature. On astrophysical scales the correlation tensor can be interpreted as the sum of a spatial curvature and an anisotropic fluid. We briefly discuss the physical implications of these results.</abstract><cop>United States</cop><doi>10.1103/PhysRevD.74.087301</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-7998 |
ispartof | Physical review. D, Particles and fields, 2006-10, Vol.74 (8), Article 087301 |
issn | 1550-7998 0556-2821 1550-2368 1089-4918 |
language | eng |
recordid | cdi_osti_scitechconnect_20871472 |
source | American Physical Society Journals |
subjects | ANISOTROPY COORDINATES CORRELATIONS COSMOLOGY DISTRIBUTION FIELD EQUATIONS FLUIDS GENERAL RELATIVITY THEORY GRAVITATION GRAVITATIONAL FIELDS PHYSICS OF ELEMENTARY PARTICLES AND FIELDS SPACE-TIME SPHERICAL CONFIGURATION SYMMETRY TENSORS |
title | Averaging spherically symmetric spacetimes in general relativity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Averaging%20spherically%20symmetric%20spacetimes%20in%20general%20relativity&rft.jtitle=Physical%20review.%20D,%20Particles%20and%20fields&rft.au=Coley,%20A.%20A.&rft.date=2006-10-01&rft.volume=74&rft.issue=8&rft.artnum=087301&rft.issn=1550-7998&rft.eissn=1550-2368&rft_id=info:doi/10.1103/PhysRevD.74.087301&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevD_74_087301%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |