Design of the Tore Supra motional Stark effect diagnostic
This article describes the overall design of the motional Stark effect diagnostic on Tore Supra (not water cooled in its first version) and the results obtained. The diagnostic is composed of nine viewing lines measuring the plasma every 8 cm with a spatial resolution varying from 3 to 6 cm . A tube...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2006-10, Vol.77 (10), p.10E503-10E503-4 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10E503-4 |
---|---|
container_issue | 10 |
container_start_page | 10E503 |
container_title | Review of scientific instruments |
container_volume | 77 |
creator | Lotte, Ph Echard, B. Hess, W. Migozzi, J. B. |
description | This article describes the overall design of the motional Stark effect diagnostic on Tore Supra (not water cooled in its first version) and the results obtained. The diagnostic is composed of nine viewing lines measuring the plasma every
8
cm
with a spatial resolution varying from
3
to
6
cm
. A tube placed inside the port adjacent to the neutral beam contains a stainless-steel mirror and SFL6 optic lenses that carry the image of the neutral beam towards the optical fibers. On Tore Supra the diagnostics having components inside the machine have to face thermal load difficulties linked with the long shots, and this will be the case for ITER diagnostics. This is why for safety reasons the insulating window is placed at the rear side of the tube, and consequently the optics is under the machine vacuum. For motional Stark effect, before reaching the thermal limits on the components, a first limitation comes from the polarization modifications induced by the temperature gradients on the lenses (birefringence effect). This limitation is estimated in terms of plasma duration. The associated diagnostic neutral beam (
60
keV
,
400
kW
,
5
s
) works in hydrogen for a higher velocity and a better plasma penetration. As a consequence the beam spectrum exhibits a large Doppler shift and a clear separation of the Stark components. The detection uses the classical elements of the polarimetry method, wide aperture photoelastic modulators, linear polarizer, narrow interference filters, and photomultipliers. The signal is processed digitally
(
250
kHz
)
for the extraction of the Fourier components that allow the calculation of the magnetic field pitch angles. The first measurements obtained during Ohmic shots for various plasma currents are in good agreement with the current diffusion calculations done with the
CRONOS
code. |
doi_str_mv | 10.1063/1.2218853 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20861210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>rsi</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-e431e5e7657e4b869b030d77986cd1d1a18c346918dae32dc88592d68bdd2b2f3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGk-OzEcRYkVD6lSgwts-XY5zbQxpVtBv49icLKLbc8eu-9h5BrYAtgUtzBgnNQqhInZAZMNUUtuTglM8ZEWci6VOfkIqVPNkwFMCPNI6Zu29Pgad4h3YSIdP19jIYeQu5Cb_Z0nU38oug92kxdZ7Z9SLmzl-TMm33Cq789Jx_PT5vla7F6f3lbPqwKK4DnAksBWGEtqxrLVsmmZYK5um6UtA4cGFBWlLIB5QwK7uxQvuFOqtY53nIv5uRmyh2v6mS7jHZnQ98PdTRnSgIHNlC3E2VjSCmi18fYHUz80cD0aEaD_jMzsPcTO4aZ8cv_4UmPDl4PevSoR6_FL7T8aPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of the Tore Supra motional Stark effect diagnostic</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Lotte, Ph ; Echard, B. ; Hess, W. ; Migozzi, J. B.</creator><creatorcontrib>Lotte, Ph ; Echard, B. ; Hess, W. ; Migozzi, J. B.</creatorcontrib><description>This article describes the overall design of the motional Stark effect diagnostic on Tore Supra (not water cooled in its first version) and the results obtained. The diagnostic is composed of nine viewing lines measuring the plasma every
8
cm
with a spatial resolution varying from
3
to
6
cm
. A tube placed inside the port adjacent to the neutral beam contains a stainless-steel mirror and SFL6 optic lenses that carry the image of the neutral beam towards the optical fibers. On Tore Supra the diagnostics having components inside the machine have to face thermal load difficulties linked with the long shots, and this will be the case for ITER diagnostics. This is why for safety reasons the insulating window is placed at the rear side of the tube, and consequently the optics is under the machine vacuum. For motional Stark effect, before reaching the thermal limits on the components, a first limitation comes from the polarization modifications induced by the temperature gradients on the lenses (birefringence effect). This limitation is estimated in terms of plasma duration. The associated diagnostic neutral beam (
60
keV
,
400
kW
,
5
s
) works in hydrogen for a higher velocity and a better plasma penetration. As a consequence the beam spectrum exhibits a large Doppler shift and a clear separation of the Stark components. The detection uses the classical elements of the polarimetry method, wide aperture photoelastic modulators, linear polarizer, narrow interference filters, and photomultipliers. The signal is processed digitally
(
250
kHz
)
for the extraction of the Fourier components that allow the calculation of the magnetic field pitch angles. The first measurements obtained during Ohmic shots for various plasma currents are in good agreement with the current diffusion calculations done with the
CRONOS
code.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.2218853</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>APERTURES ; BEAMS ; BIREFRINGENCE ; DESIGN ; DOPPLER EFFECT ; ELECTRIC CURRENTS ; EXTRACTION ; HYDROGEN ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; ITER TOKAMAK ; KEV RANGE 10-100 ; KHZ RANGE 100-1000 ; OPTICAL FIBERS ; PHOTOMULTIPLIERS ; PLASMA ; POLARIMETRY ; SPATIAL RESOLUTION ; STAINLESS STEELS ; STARK EFFECT ; TORE SUPRA TOKAMAK</subject><ispartof>Review of scientific instruments, 2006-10, Vol.77 (10), p.10E503-10E503-4</ispartof><rights>2006 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-e431e5e7657e4b869b030d77986cd1d1a18c346918dae32dc88592d68bdd2b2f3</citedby><cites>FETCH-LOGICAL-c312t-e431e5e7657e4b869b030d77986cd1d1a18c346918dae32dc88592d68bdd2b2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.2218853$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20861210$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lotte, Ph</creatorcontrib><creatorcontrib>Echard, B.</creatorcontrib><creatorcontrib>Hess, W.</creatorcontrib><creatorcontrib>Migozzi, J. B.</creatorcontrib><title>Design of the Tore Supra motional Stark effect diagnostic</title><title>Review of scientific instruments</title><description>This article describes the overall design of the motional Stark effect diagnostic on Tore Supra (not water cooled in its first version) and the results obtained. The diagnostic is composed of nine viewing lines measuring the plasma every
8
cm
with a spatial resolution varying from
3
to
6
cm
. A tube placed inside the port adjacent to the neutral beam contains a stainless-steel mirror and SFL6 optic lenses that carry the image of the neutral beam towards the optical fibers. On Tore Supra the diagnostics having components inside the machine have to face thermal load difficulties linked with the long shots, and this will be the case for ITER diagnostics. This is why for safety reasons the insulating window is placed at the rear side of the tube, and consequently the optics is under the machine vacuum. For motional Stark effect, before reaching the thermal limits on the components, a first limitation comes from the polarization modifications induced by the temperature gradients on the lenses (birefringence effect). This limitation is estimated in terms of plasma duration. The associated diagnostic neutral beam (
60
keV
,
400
kW
,
5
s
) works in hydrogen for a higher velocity and a better plasma penetration. As a consequence the beam spectrum exhibits a large Doppler shift and a clear separation of the Stark components. The detection uses the classical elements of the polarimetry method, wide aperture photoelastic modulators, linear polarizer, narrow interference filters, and photomultipliers. The signal is processed digitally
(
250
kHz
)
for the extraction of the Fourier components that allow the calculation of the magnetic field pitch angles. The first measurements obtained during Ohmic shots for various plasma currents are in good agreement with the current diffusion calculations done with the
CRONOS
code.</description><subject>APERTURES</subject><subject>BEAMS</subject><subject>BIREFRINGENCE</subject><subject>DESIGN</subject><subject>DOPPLER EFFECT</subject><subject>ELECTRIC CURRENTS</subject><subject>EXTRACTION</subject><subject>HYDROGEN</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>ITER TOKAMAK</subject><subject>KEV RANGE 10-100</subject><subject>KHZ RANGE 100-1000</subject><subject>OPTICAL FIBERS</subject><subject>PHOTOMULTIPLIERS</subject><subject>PLASMA</subject><subject>POLARIMETRY</subject><subject>SPATIAL RESOLUTION</subject><subject>STAINLESS STEELS</subject><subject>STARK EFFECT</subject><subject>TORE SUPRA TOKAMAK</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGk-OzEcRYkVD6lSgwts-XY5zbQxpVtBv49icLKLbc8eu-9h5BrYAtgUtzBgnNQqhInZAZMNUUtuTglM8ZEWci6VOfkIqVPNkwFMCPNI6Zu29Pgad4h3YSIdP19jIYeQu5Cb_Z0nU38oug92kxdZ7Z9SLmzl-TMm33Cq789Jx_PT5vla7F6f3lbPqwKK4DnAksBWGEtqxrLVsmmZYK5um6UtA4cGFBWlLIB5QwK7uxQvuFOqtY53nIv5uRmyh2v6mS7jHZnQ98PdTRnSgIHNlC3E2VjSCmi18fYHUz80cD0aEaD_jMzsPcTO4aZ8cv_4UmPDl4PevSoR6_FL7T8aPw</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Lotte, Ph</creator><creator>Echard, B.</creator><creator>Hess, W.</creator><creator>Migozzi, J. B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20061001</creationdate><title>Design of the Tore Supra motional Stark effect diagnostic</title><author>Lotte, Ph ; Echard, B. ; Hess, W. ; Migozzi, J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-e431e5e7657e4b869b030d77986cd1d1a18c346918dae32dc88592d68bdd2b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>APERTURES</topic><topic>BEAMS</topic><topic>BIREFRINGENCE</topic><topic>DESIGN</topic><topic>DOPPLER EFFECT</topic><topic>ELECTRIC CURRENTS</topic><topic>EXTRACTION</topic><topic>HYDROGEN</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>ITER TOKAMAK</topic><topic>KEV RANGE 10-100</topic><topic>KHZ RANGE 100-1000</topic><topic>OPTICAL FIBERS</topic><topic>PHOTOMULTIPLIERS</topic><topic>PLASMA</topic><topic>POLARIMETRY</topic><topic>SPATIAL RESOLUTION</topic><topic>STAINLESS STEELS</topic><topic>STARK EFFECT</topic><topic>TORE SUPRA TOKAMAK</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lotte, Ph</creatorcontrib><creatorcontrib>Echard, B.</creatorcontrib><creatorcontrib>Hess, W.</creatorcontrib><creatorcontrib>Migozzi, J. B.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lotte, Ph</au><au>Echard, B.</au><au>Hess, W.</au><au>Migozzi, J. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of the Tore Supra motional Stark effect diagnostic</atitle><jtitle>Review of scientific instruments</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>77</volume><issue>10</issue><spage>10E503</spage><epage>10E503-4</epage><pages>10E503-10E503-4</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>This article describes the overall design of the motional Stark effect diagnostic on Tore Supra (not water cooled in its first version) and the results obtained. The diagnostic is composed of nine viewing lines measuring the plasma every
8
cm
with a spatial resolution varying from
3
to
6
cm
. A tube placed inside the port adjacent to the neutral beam contains a stainless-steel mirror and SFL6 optic lenses that carry the image of the neutral beam towards the optical fibers. On Tore Supra the diagnostics having components inside the machine have to face thermal load difficulties linked with the long shots, and this will be the case for ITER diagnostics. This is why for safety reasons the insulating window is placed at the rear side of the tube, and consequently the optics is under the machine vacuum. For motional Stark effect, before reaching the thermal limits on the components, a first limitation comes from the polarization modifications induced by the temperature gradients on the lenses (birefringence effect). This limitation is estimated in terms of plasma duration. The associated diagnostic neutral beam (
60
keV
,
400
kW
,
5
s
) works in hydrogen for a higher velocity and a better plasma penetration. As a consequence the beam spectrum exhibits a large Doppler shift and a clear separation of the Stark components. The detection uses the classical elements of the polarimetry method, wide aperture photoelastic modulators, linear polarizer, narrow interference filters, and photomultipliers. The signal is processed digitally
(
250
kHz
)
for the extraction of the Fourier components that allow the calculation of the magnetic field pitch angles. The first measurements obtained during Ohmic shots for various plasma currents are in good agreement with the current diffusion calculations done with the
CRONOS
code.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2218853</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2006-10, Vol.77 (10), p.10E503-10E503-4 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_osti_scitechconnect_20861210 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | APERTURES BEAMS BIREFRINGENCE DESIGN DOPPLER EFFECT ELECTRIC CURRENTS EXTRACTION HYDROGEN INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ITER TOKAMAK KEV RANGE 10-100 KHZ RANGE 100-1000 OPTICAL FIBERS PHOTOMULTIPLIERS PLASMA POLARIMETRY SPATIAL RESOLUTION STAINLESS STEELS STARK EFFECT TORE SUPRA TOKAMAK |
title | Design of the Tore Supra motional Stark effect diagnostic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20the%20Tore%20Supra%20motional%20Stark%20effect%20diagnostic&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Lotte,%20Ph&rft.date=2006-10-01&rft.volume=77&rft.issue=10&rft.spage=10E503&rft.epage=10E503-4&rft.pages=10E503-10E503-4&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.2218853&rft_dat=%3Cscitation_osti_%3Ersi%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |