Computational modeling of fully ionized magnetized plasmas using the fluid approximation

Strongly magnetized plasmas are rich in spatial and temporal scales, making a computational approach useful for studying these systems. The most accurate model of a magnetized plasma is based on a kinetic equation that describes the evolution of the distribution function for each species in six-dime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2006-05, Vol.13 (5), p.058103-058103-21
Hauptverfasser: Schnack, D. D., Barnes, D. C., Brennan, D. P., Hegna, C. C., Held, E., Kim, C. C., Kruger, S. E., Pankin, A. Y., Sovinec, C. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 058103-21
container_issue 5
container_start_page 058103
container_title Physics of plasmas
container_volume 13
creator Schnack, D. D.
Barnes, D. C.
Brennan, D. P.
Hegna, C. C.
Held, E.
Kim, C. C.
Kruger, S. E.
Pankin, A. Y.
Sovinec, C. R.
description Strongly magnetized plasmas are rich in spatial and temporal scales, making a computational approach useful for studying these systems. The most accurate model of a magnetized plasma is based on a kinetic equation that describes the evolution of the distribution function for each species in six-dimensional phase space. High dimensionality renders this approach impractical for computations for long time scales. Fluid models are an approximation to the kinetic model. The reduced dimensionality allows a wider range of spatial and∕or temporal scales to be explored. Computational modeling requires understanding the ordering and closure approximations, the fundamental waves supported by the equations, and the numerical properties of the discretization scheme. Several ordering and closure schemes are reviewed and discussed, as are their normal modes, and algorithms that can be applied to obtain a numerical solution.
doi_str_mv 10.1063/1.2183738
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20783191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-b541d517fc34c427dad8d59b2d6c86c89ba59583754a46e151bac2936765af093</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI4u_AcBVy46Js2r2Qgy-IIBNwqzC2keM5W2KU0K6q-3nc7GhXDhHi4fh3sOANcYrTDi5A6vclwQQYoTsMCokJnggp5OWqCMc7o9BxcxfiKEKGfFAmzXoemGpFMVWl3DJlhXV-0OBg_9UNffcLxXP87CRu9alw6yq3VsdIRDnMi0d9DXQ2Wh7ro-fFXNwewSnHldR3d13Evw8fT4vn7JNm_Pr-uHTWYoJikrGcWWYeENoYbmwmpbWCbL3HJTjCNLzSQbEzGqKXeY4VKbXBIuONMeSbIEN7NviKlS0VTJmb0JbetMUjkSBcESj9TtTJk-xNg7r7p-fLT_VhipqTiF1bG4kb2f2cnskOV_-E97am6P_AKlfnaE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational modeling of fully ionized magnetized plasmas using the fluid approximation</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Schnack, D. D. ; Barnes, D. C. ; Brennan, D. P. ; Hegna, C. C. ; Held, E. ; Kim, C. C. ; Kruger, S. E. ; Pankin, A. Y. ; Sovinec, C. R.</creator><creatorcontrib>Schnack, D. D. ; Barnes, D. C. ; Brennan, D. P. ; Hegna, C. C. ; Held, E. ; Kim, C. C. ; Kruger, S. E. ; Pankin, A. Y. ; Sovinec, C. R.</creatorcontrib><description>Strongly magnetized plasmas are rich in spatial and temporal scales, making a computational approach useful for studying these systems. The most accurate model of a magnetized plasma is based on a kinetic equation that describes the evolution of the distribution function for each species in six-dimensional phase space. High dimensionality renders this approach impractical for computations for long time scales. Fluid models are an approximation to the kinetic model. The reduced dimensionality allows a wider range of spatial and∕or temporal scales to be explored. Computational modeling requires understanding the ordering and closure approximations, the fundamental waves supported by the equations, and the numerical properties of the discretization scheme. Several ordering and closure schemes are reviewed and discussed, as are their normal modes, and algorithms that can be applied to obtain a numerical solution.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.2183738</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ALGORITHMS ; APPROXIMATIONS ; DISTRIBUTION FUNCTIONS ; KINETIC EQUATIONS ; NUMERICAL ANALYSIS ; NUMERICAL SOLUTION ; PHASE SPACE ; PLASMA ; PLASMA FLUID EQUATIONS ; PLASMA SIMULATION</subject><ispartof>Physics of plasmas, 2006-05, Vol.13 (5), p.058103-058103-21</ispartof><rights>2006 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-b541d517fc34c427dad8d59b2d6c86c89ba59583754a46e151bac2936765af093</citedby><cites>FETCH-LOGICAL-c413t-b541d517fc34c427dad8d59b2d6c86c89ba59583754a46e151bac2936765af093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.2183738$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20783191$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schnack, D. D.</creatorcontrib><creatorcontrib>Barnes, D. C.</creatorcontrib><creatorcontrib>Brennan, D. P.</creatorcontrib><creatorcontrib>Hegna, C. C.</creatorcontrib><creatorcontrib>Held, E.</creatorcontrib><creatorcontrib>Kim, C. C.</creatorcontrib><creatorcontrib>Kruger, S. E.</creatorcontrib><creatorcontrib>Pankin, A. Y.</creatorcontrib><creatorcontrib>Sovinec, C. R.</creatorcontrib><title>Computational modeling of fully ionized magnetized plasmas using the fluid approximation</title><title>Physics of plasmas</title><description>Strongly magnetized plasmas are rich in spatial and temporal scales, making a computational approach useful for studying these systems. The most accurate model of a magnetized plasma is based on a kinetic equation that describes the evolution of the distribution function for each species in six-dimensional phase space. High dimensionality renders this approach impractical for computations for long time scales. Fluid models are an approximation to the kinetic model. The reduced dimensionality allows a wider range of spatial and∕or temporal scales to be explored. Computational modeling requires understanding the ordering and closure approximations, the fundamental waves supported by the equations, and the numerical properties of the discretization scheme. Several ordering and closure schemes are reviewed and discussed, as are their normal modes, and algorithms that can be applied to obtain a numerical solution.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ALGORITHMS</subject><subject>APPROXIMATIONS</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>KINETIC EQUATIONS</subject><subject>NUMERICAL ANALYSIS</subject><subject>NUMERICAL SOLUTION</subject><subject>PHASE SPACE</subject><subject>PLASMA</subject><subject>PLASMA FLUID EQUATIONS</subject><subject>PLASMA SIMULATION</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI4u_AcBVy46Js2r2Qgy-IIBNwqzC2keM5W2KU0K6q-3nc7GhXDhHi4fh3sOANcYrTDi5A6vclwQQYoTsMCokJnggp5OWqCMc7o9BxcxfiKEKGfFAmzXoemGpFMVWl3DJlhXV-0OBg_9UNffcLxXP87CRu9alw6yq3VsdIRDnMi0d9DXQ2Wh7ro-fFXNwewSnHldR3d13Evw8fT4vn7JNm_Pr-uHTWYoJikrGcWWYeENoYbmwmpbWCbL3HJTjCNLzSQbEzGqKXeY4VKbXBIuONMeSbIEN7NviKlS0VTJmb0JbetMUjkSBcESj9TtTJk-xNg7r7p-fLT_VhipqTiF1bG4kb2f2cnskOV_-E97am6P_AKlfnaE</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Schnack, D. D.</creator><creator>Barnes, D. C.</creator><creator>Brennan, D. P.</creator><creator>Hegna, C. C.</creator><creator>Held, E.</creator><creator>Kim, C. C.</creator><creator>Kruger, S. E.</creator><creator>Pankin, A. Y.</creator><creator>Sovinec, C. R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20060501</creationdate><title>Computational modeling of fully ionized magnetized plasmas using the fluid approximation</title><author>Schnack, D. D. ; Barnes, D. C. ; Brennan, D. P. ; Hegna, C. C. ; Held, E. ; Kim, C. C. ; Kruger, S. E. ; Pankin, A. Y. ; Sovinec, C. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-b541d517fc34c427dad8d59b2d6c86c89ba59583754a46e151bac2936765af093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ALGORITHMS</topic><topic>APPROXIMATIONS</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>KINETIC EQUATIONS</topic><topic>NUMERICAL ANALYSIS</topic><topic>NUMERICAL SOLUTION</topic><topic>PHASE SPACE</topic><topic>PLASMA</topic><topic>PLASMA FLUID EQUATIONS</topic><topic>PLASMA SIMULATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schnack, D. D.</creatorcontrib><creatorcontrib>Barnes, D. C.</creatorcontrib><creatorcontrib>Brennan, D. P.</creatorcontrib><creatorcontrib>Hegna, C. C.</creatorcontrib><creatorcontrib>Held, E.</creatorcontrib><creatorcontrib>Kim, C. C.</creatorcontrib><creatorcontrib>Kruger, S. E.</creatorcontrib><creatorcontrib>Pankin, A. Y.</creatorcontrib><creatorcontrib>Sovinec, C. R.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schnack, D. D.</au><au>Barnes, D. C.</au><au>Brennan, D. P.</au><au>Hegna, C. C.</au><au>Held, E.</au><au>Kim, C. C.</au><au>Kruger, S. E.</au><au>Pankin, A. Y.</au><au>Sovinec, C. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational modeling of fully ionized magnetized plasmas using the fluid approximation</atitle><jtitle>Physics of plasmas</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>13</volume><issue>5</issue><spage>058103</spage><epage>058103-21</epage><pages>058103-058103-21</pages><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Strongly magnetized plasmas are rich in spatial and temporal scales, making a computational approach useful for studying these systems. The most accurate model of a magnetized plasma is based on a kinetic equation that describes the evolution of the distribution function for each species in six-dimensional phase space. High dimensionality renders this approach impractical for computations for long time scales. Fluid models are an approximation to the kinetic model. The reduced dimensionality allows a wider range of spatial and∕or temporal scales to be explored. Computational modeling requires understanding the ordering and closure approximations, the fundamental waves supported by the equations, and the numerical properties of the discretization scheme. Several ordering and closure schemes are reviewed and discussed, as are their normal modes, and algorithms that can be applied to obtain a numerical solution.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2183738</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2006-05, Vol.13 (5), p.058103-058103-21
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_20783191
source AIP Journals Complete; AIP Digital Archive
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
ALGORITHMS
APPROXIMATIONS
DISTRIBUTION FUNCTIONS
KINETIC EQUATIONS
NUMERICAL ANALYSIS
NUMERICAL SOLUTION
PHASE SPACE
PLASMA
PLASMA FLUID EQUATIONS
PLASMA SIMULATION
title Computational modeling of fully ionized magnetized plasmas using the fluid approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20modeling%20of%20fully%20ionized%20magnetized%20plasmas%20using%20the%20fluid%20approximation&rft.jtitle=Physics%20of%20plasmas&rft.au=Schnack,%20D.%20D.&rft.date=2006-05-01&rft.volume=13&rft.issue=5&rft.spage=058103&rft.epage=058103-21&rft.pages=058103-058103-21&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.2183738&rft_dat=%3Cscitation_osti_%3Epop%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true