Computational modeling of fully ionized magnetized plasmas using the fluid approximation
Strongly magnetized plasmas are rich in spatial and temporal scales, making a computational approach useful for studying these systems. The most accurate model of a magnetized plasma is based on a kinetic equation that describes the evolution of the distribution function for each species in six-dime...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2006-05, Vol.13 (5), p.058103-058103-21 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 058103-21 |
---|---|
container_issue | 5 |
container_start_page | 058103 |
container_title | Physics of plasmas |
container_volume | 13 |
creator | Schnack, D. D. Barnes, D. C. Brennan, D. P. Hegna, C. C. Held, E. Kim, C. C. Kruger, S. E. Pankin, A. Y. Sovinec, C. R. |
description | Strongly magnetized plasmas are rich in spatial and temporal scales, making a computational approach useful for studying these systems. The most accurate model of a magnetized plasma is based on a kinetic equation that describes the evolution of the distribution function for each species in six-dimensional phase space. High dimensionality renders this approach impractical for computations for long time scales. Fluid models are an approximation to the kinetic model. The reduced dimensionality allows a wider range of spatial and∕or temporal scales to be explored. Computational modeling requires understanding the ordering and closure approximations, the fundamental waves supported by the equations, and the numerical properties of the discretization scheme. Several ordering and closure schemes are reviewed and discussed, as are their normal modes, and algorithms that can be applied to obtain a numerical solution. |
doi_str_mv | 10.1063/1.2183738 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20783191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-b541d517fc34c427dad8d59b2d6c86c89ba59583754a46e151bac2936765af093</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI4u_AcBVy46Js2r2Qgy-IIBNwqzC2keM5W2KU0K6q-3nc7GhXDhHi4fh3sOANcYrTDi5A6vclwQQYoTsMCokJnggp5OWqCMc7o9BxcxfiKEKGfFAmzXoemGpFMVWl3DJlhXV-0OBg_9UNffcLxXP87CRu9alw6yq3VsdIRDnMi0d9DXQ2Wh7ro-fFXNwewSnHldR3d13Evw8fT4vn7JNm_Pr-uHTWYoJikrGcWWYeENoYbmwmpbWCbL3HJTjCNLzSQbEzGqKXeY4VKbXBIuONMeSbIEN7NviKlS0VTJmb0JbetMUjkSBcESj9TtTJk-xNg7r7p-fLT_VhipqTiF1bG4kb2f2cnskOV_-E97am6P_AKlfnaE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational modeling of fully ionized magnetized plasmas using the fluid approximation</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Schnack, D. D. ; Barnes, D. C. ; Brennan, D. P. ; Hegna, C. C. ; Held, E. ; Kim, C. C. ; Kruger, S. E. ; Pankin, A. Y. ; Sovinec, C. R.</creator><creatorcontrib>Schnack, D. D. ; Barnes, D. C. ; Brennan, D. P. ; Hegna, C. C. ; Held, E. ; Kim, C. C. ; Kruger, S. E. ; Pankin, A. Y. ; Sovinec, C. R.</creatorcontrib><description>Strongly magnetized plasmas are rich in spatial and temporal scales, making a computational approach useful for studying these systems. The most accurate model of a magnetized plasma is based on a kinetic equation that describes the evolution of the distribution function for each species in six-dimensional phase space. High dimensionality renders this approach impractical for computations for long time scales. Fluid models are an approximation to the kinetic model. The reduced dimensionality allows a wider range of spatial and∕or temporal scales to be explored. Computational modeling requires understanding the ordering and closure approximations, the fundamental waves supported by the equations, and the numerical properties of the discretization scheme. Several ordering and closure schemes are reviewed and discussed, as are their normal modes, and algorithms that can be applied to obtain a numerical solution.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.2183738</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ALGORITHMS ; APPROXIMATIONS ; DISTRIBUTION FUNCTIONS ; KINETIC EQUATIONS ; NUMERICAL ANALYSIS ; NUMERICAL SOLUTION ; PHASE SPACE ; PLASMA ; PLASMA FLUID EQUATIONS ; PLASMA SIMULATION</subject><ispartof>Physics of plasmas, 2006-05, Vol.13 (5), p.058103-058103-21</ispartof><rights>2006 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-b541d517fc34c427dad8d59b2d6c86c89ba59583754a46e151bac2936765af093</citedby><cites>FETCH-LOGICAL-c413t-b541d517fc34c427dad8d59b2d6c86c89ba59583754a46e151bac2936765af093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.2183738$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20783191$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schnack, D. D.</creatorcontrib><creatorcontrib>Barnes, D. C.</creatorcontrib><creatorcontrib>Brennan, D. P.</creatorcontrib><creatorcontrib>Hegna, C. C.</creatorcontrib><creatorcontrib>Held, E.</creatorcontrib><creatorcontrib>Kim, C. C.</creatorcontrib><creatorcontrib>Kruger, S. E.</creatorcontrib><creatorcontrib>Pankin, A. Y.</creatorcontrib><creatorcontrib>Sovinec, C. R.</creatorcontrib><title>Computational modeling of fully ionized magnetized plasmas using the fluid approximation</title><title>Physics of plasmas</title><description>Strongly magnetized plasmas are rich in spatial and temporal scales, making a computational approach useful for studying these systems. The most accurate model of a magnetized plasma is based on a kinetic equation that describes the evolution of the distribution function for each species in six-dimensional phase space. High dimensionality renders this approach impractical for computations for long time scales. Fluid models are an approximation to the kinetic model. The reduced dimensionality allows a wider range of spatial and∕or temporal scales to be explored. Computational modeling requires understanding the ordering and closure approximations, the fundamental waves supported by the equations, and the numerical properties of the discretization scheme. Several ordering and closure schemes are reviewed and discussed, as are their normal modes, and algorithms that can be applied to obtain a numerical solution.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ALGORITHMS</subject><subject>APPROXIMATIONS</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>KINETIC EQUATIONS</subject><subject>NUMERICAL ANALYSIS</subject><subject>NUMERICAL SOLUTION</subject><subject>PHASE SPACE</subject><subject>PLASMA</subject><subject>PLASMA FLUID EQUATIONS</subject><subject>PLASMA SIMULATION</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI4u_AcBVy46Js2r2Qgy-IIBNwqzC2keM5W2KU0K6q-3nc7GhXDhHi4fh3sOANcYrTDi5A6vclwQQYoTsMCokJnggp5OWqCMc7o9BxcxfiKEKGfFAmzXoemGpFMVWl3DJlhXV-0OBg_9UNffcLxXP87CRu9alw6yq3VsdIRDnMi0d9DXQ2Wh7ro-fFXNwewSnHldR3d13Evw8fT4vn7JNm_Pr-uHTWYoJikrGcWWYeENoYbmwmpbWCbL3HJTjCNLzSQbEzGqKXeY4VKbXBIuONMeSbIEN7NviKlS0VTJmb0JbetMUjkSBcESj9TtTJk-xNg7r7p-fLT_VhipqTiF1bG4kb2f2cnskOV_-E97am6P_AKlfnaE</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Schnack, D. D.</creator><creator>Barnes, D. C.</creator><creator>Brennan, D. P.</creator><creator>Hegna, C. C.</creator><creator>Held, E.</creator><creator>Kim, C. C.</creator><creator>Kruger, S. E.</creator><creator>Pankin, A. Y.</creator><creator>Sovinec, C. R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20060501</creationdate><title>Computational modeling of fully ionized magnetized plasmas using the fluid approximation</title><author>Schnack, D. D. ; Barnes, D. C. ; Brennan, D. P. ; Hegna, C. C. ; Held, E. ; Kim, C. C. ; Kruger, S. E. ; Pankin, A. Y. ; Sovinec, C. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-b541d517fc34c427dad8d59b2d6c86c89ba59583754a46e151bac2936765af093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ALGORITHMS</topic><topic>APPROXIMATIONS</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>KINETIC EQUATIONS</topic><topic>NUMERICAL ANALYSIS</topic><topic>NUMERICAL SOLUTION</topic><topic>PHASE SPACE</topic><topic>PLASMA</topic><topic>PLASMA FLUID EQUATIONS</topic><topic>PLASMA SIMULATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schnack, D. D.</creatorcontrib><creatorcontrib>Barnes, D. C.</creatorcontrib><creatorcontrib>Brennan, D. P.</creatorcontrib><creatorcontrib>Hegna, C. C.</creatorcontrib><creatorcontrib>Held, E.</creatorcontrib><creatorcontrib>Kim, C. C.</creatorcontrib><creatorcontrib>Kruger, S. E.</creatorcontrib><creatorcontrib>Pankin, A. Y.</creatorcontrib><creatorcontrib>Sovinec, C. R.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schnack, D. D.</au><au>Barnes, D. C.</au><au>Brennan, D. P.</au><au>Hegna, C. C.</au><au>Held, E.</au><au>Kim, C. C.</au><au>Kruger, S. E.</au><au>Pankin, A. Y.</au><au>Sovinec, C. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational modeling of fully ionized magnetized plasmas using the fluid approximation</atitle><jtitle>Physics of plasmas</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>13</volume><issue>5</issue><spage>058103</spage><epage>058103-21</epage><pages>058103-058103-21</pages><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Strongly magnetized plasmas are rich in spatial and temporal scales, making a computational approach useful for studying these systems. The most accurate model of a magnetized plasma is based on a kinetic equation that describes the evolution of the distribution function for each species in six-dimensional phase space. High dimensionality renders this approach impractical for computations for long time scales. Fluid models are an approximation to the kinetic model. The reduced dimensionality allows a wider range of spatial and∕or temporal scales to be explored. Computational modeling requires understanding the ordering and closure approximations, the fundamental waves supported by the equations, and the numerical properties of the discretization scheme. Several ordering and closure schemes are reviewed and discussed, as are their normal modes, and algorithms that can be applied to obtain a numerical solution.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2183738</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2006-05, Vol.13 (5), p.058103-058103-21 |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_20783191 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ALGORITHMS APPROXIMATIONS DISTRIBUTION FUNCTIONS KINETIC EQUATIONS NUMERICAL ANALYSIS NUMERICAL SOLUTION PHASE SPACE PLASMA PLASMA FLUID EQUATIONS PLASMA SIMULATION |
title | Computational modeling of fully ionized magnetized plasmas using the fluid approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20modeling%20of%20fully%20ionized%20magnetized%20plasmas%20using%20the%20fluid%20approximation&rft.jtitle=Physics%20of%20plasmas&rft.au=Schnack,%20D.%20D.&rft.date=2006-05-01&rft.volume=13&rft.issue=5&rft.spage=058103&rft.epage=058103-21&rft.pages=058103-058103-21&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.2183738&rft_dat=%3Cscitation_osti_%3Epop%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |