Nondestructively Visualizing and Understanding the Mechano‐Electro‐chemical Origins of “Soft Short” and “Creeping” in All‐Solid‐State Batteries
All‐solid‐state Li‐metal batteries (ASLMBs) represent a significant breakthrough in the quest to overcome limitations associated with traditional Li‐ion batteries, particularly in energy density and safety aspects. However, widespread implementation is stymied due to a lack of profound understanding...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-12, Vol.33 (52), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 52 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Cao, Daxian Zhang, Kena Li, Wei Zhang, Yuxuan Ji, Tongtai Zhao, Xianhui Cakmak, Ercan Zhu, Juner Cao, Ye Zhu, Hongli |
description | All‐solid‐state Li‐metal batteries (ASLMBs) represent a significant breakthrough in the quest to overcome limitations associated with traditional Li‐ion batteries, particularly in energy density and safety aspects. However, widespread implementation is stymied due to a lack of profound understanding of the complex mechano‐electro‐chemical behavior of Li metal in the ASLMBs. Herein, operando neutron imaging and X‐ray computed tomography (XCT) are leveraged to nondestructively visualize Li behaviors within ASLMBs. This approach offers real‐time observations of Li evolutions, both pre‐ and post‐ occurrence of a “soft short”. The coordination of 2D neutron radiography and 3D neutron tomography enables charting of the terrain of Li metal deformation operando. Concurrently, XCT offers a 3D insight into the internal structure of the battery following a “soft short”. Despite the manifestation of a “soft short”, the persistence of Faradaic processes is observed. To study the elusive “soft short” , phase field modeling is coupled with electrochemistry and solid mechanics theory. The research unravels how external pressure curbs dendrite growth, potentially leading to dendrite fractures and thus uncovering the origins of both “soft” and “hard” shorts in ASLMBs. Furthermore, by harnessing finite element modeling, it dive deeper into the mechanical deformation and the fluidity of Li metal.
This work successfully visualizes the Li deformation and the “soft short” in all‐solid‐state Li metal batteries using operando neutron imaging. It unravels how external pressure curbs dendrite growth, but also leads to dendrite fractures, uncovering the origins of both “soft” and “hard” shorts in Li metal batteries. Furthermore, finite element modeling enables a deeper dive into the deformation and the fluidity of Li metal. |
doi_str_mv | 10.1002/adfm.202307998 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2076199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904816006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3848-c937667b307f53556cccd3e3caf350a4175af90a76c3e975153bca1ceb2df2ab3</originalsourceid><addsrcrecordid>eNqFUc1uGyEYXEWtlDTNtWfUnO3C4oXl6LpJUyk_BzdRbwh_CzERBgdwKufkR-gDNMq7-UnC1lV67OkbfcyMvmGq6gPBQ4Jx_Ul1ZjGscU0xF6Ldqw4II2xAcd2-ecXkx371LqU7jAnndHRQPV8G3-mU4wqyfdBujW5sWilnH62_Rcp36Lq8x5QL7Dd5rtGFhrnyYbv5deI05NgjmOuFBeXQVbS31icUDNpufk-DyWg6DzFvN09_7MpyErVeFrN-ZT0aO1cMpsHZrp9ZZY0-q5x1tDq9r94a5ZI--jsPq-vTk--Ts8H51ddvk_H5AGg7agcgKGeMz0p209CmYQDQUU1BGdpgNSK8UUZgxRlQLXhDGjoDRUDP6s7UakYPq48735CylQlsLiEheF8CyhpzRoQopOMdaRnD_ar8mrwLq-jLXbIWeNQShjErrOGOBTGkFLWRy2gXKq4lwbJvSvZNydemikDsBD-t0-v_sOX4y-nFP-0L3lWiSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904816006</pqid></control><display><type>article</type><title>Nondestructively Visualizing and Understanding the Mechano‐Electro‐chemical Origins of “Soft Short” and “Creeping” in All‐Solid‐State Batteries</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Cao, Daxian ; Zhang, Kena ; Li, Wei ; Zhang, Yuxuan ; Ji, Tongtai ; Zhao, Xianhui ; Cakmak, Ercan ; Zhu, Juner ; Cao, Ye ; Zhu, Hongli</creator><creatorcontrib>Cao, Daxian ; Zhang, Kena ; Li, Wei ; Zhang, Yuxuan ; Ji, Tongtai ; Zhao, Xianhui ; Cakmak, Ercan ; Zhu, Juner ; Cao, Ye ; Zhu, Hongli ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)</creatorcontrib><description>All‐solid‐state Li‐metal batteries (ASLMBs) represent a significant breakthrough in the quest to overcome limitations associated with traditional Li‐ion batteries, particularly in energy density and safety aspects. However, widespread implementation is stymied due to a lack of profound understanding of the complex mechano‐electro‐chemical behavior of Li metal in the ASLMBs. Herein, operando neutron imaging and X‐ray computed tomography (XCT) are leveraged to nondestructively visualize Li behaviors within ASLMBs. This approach offers real‐time observations of Li evolutions, both pre‐ and post‐ occurrence of a “soft short”. The coordination of 2D neutron radiography and 3D neutron tomography enables charting of the terrain of Li metal deformation operando. Concurrently, XCT offers a 3D insight into the internal structure of the battery following a “soft short”. Despite the manifestation of a “soft short”, the persistence of Faradaic processes is observed. To study the elusive “soft short” , phase field modeling is coupled with electrochemistry and solid mechanics theory. The research unravels how external pressure curbs dendrite growth, potentially leading to dendrite fractures and thus uncovering the origins of both “soft” and “hard” shorts in ASLMBs. Furthermore, by harnessing finite element modeling, it dive deeper into the mechanical deformation and the fluidity of Li metal.
This work successfully visualizes the Li deformation and the “soft short” in all‐solid‐state Li metal batteries using operando neutron imaging. It unravels how external pressure curbs dendrite growth, but also leads to dendrite fractures, uncovering the origins of both “soft” and “hard” shorts in Li metal batteries. Furthermore, finite element modeling enables a deeper dive into the deformation and the fluidity of Li metal.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202307998</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Computed tomography ; Creep (materials) ; Deformation ; Electrochemistry ; ENERGY STORAGE ; External pressure ; Finite element method ; Fractures ; Li metal ; Lithium-ion batteries ; Materials science ; Mathematical models ; mechano-electrochemical reaction ; Modelling ; Neutron radiography ; operando neutron imaging ; Origins ; soft short ; Solid mechanics ; solid-state batteries ; Tomography</subject><ispartof>Advanced functional materials, 2023-12, Vol.33 (52), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3848-c937667b307f53556cccd3e3caf350a4175af90a76c3e975153bca1ceb2df2ab3</citedby><cites>FETCH-LOGICAL-c3848-c937667b307f53556cccd3e3caf350a4175af90a76c3e975153bca1ceb2df2ab3</cites><orcidid>0000-0002-0083-1408 ; 0000-0003-1733-4333 ; 0000-0003-2106-6861 ; 0000000321066861 ; 0000000172724815 ; 0000000317334333 ; 0000000200831408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202307998$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202307998$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2076199$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Daxian</creatorcontrib><creatorcontrib>Zhang, Kena</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Yuxuan</creatorcontrib><creatorcontrib>Ji, Tongtai</creatorcontrib><creatorcontrib>Zhao, Xianhui</creatorcontrib><creatorcontrib>Cakmak, Ercan</creatorcontrib><creatorcontrib>Zhu, Juner</creatorcontrib><creatorcontrib>Cao, Ye</creatorcontrib><creatorcontrib>Zhu, Hongli</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)</creatorcontrib><title>Nondestructively Visualizing and Understanding the Mechano‐Electro‐chemical Origins of “Soft Short” and “Creeping” in All‐Solid‐State Batteries</title><title>Advanced functional materials</title><description>All‐solid‐state Li‐metal batteries (ASLMBs) represent a significant breakthrough in the quest to overcome limitations associated with traditional Li‐ion batteries, particularly in energy density and safety aspects. However, widespread implementation is stymied due to a lack of profound understanding of the complex mechano‐electro‐chemical behavior of Li metal in the ASLMBs. Herein, operando neutron imaging and X‐ray computed tomography (XCT) are leveraged to nondestructively visualize Li behaviors within ASLMBs. This approach offers real‐time observations of Li evolutions, both pre‐ and post‐ occurrence of a “soft short”. The coordination of 2D neutron radiography and 3D neutron tomography enables charting of the terrain of Li metal deformation operando. Concurrently, XCT offers a 3D insight into the internal structure of the battery following a “soft short”. Despite the manifestation of a “soft short”, the persistence of Faradaic processes is observed. To study the elusive “soft short” , phase field modeling is coupled with electrochemistry and solid mechanics theory. The research unravels how external pressure curbs dendrite growth, potentially leading to dendrite fractures and thus uncovering the origins of both “soft” and “hard” shorts in ASLMBs. Furthermore, by harnessing finite element modeling, it dive deeper into the mechanical deformation and the fluidity of Li metal.
This work successfully visualizes the Li deformation and the “soft short” in all‐solid‐state Li metal batteries using operando neutron imaging. It unravels how external pressure curbs dendrite growth, but also leads to dendrite fractures, uncovering the origins of both “soft” and “hard” shorts in Li metal batteries. Furthermore, finite element modeling enables a deeper dive into the deformation and the fluidity of Li metal.</description><subject>Computed tomography</subject><subject>Creep (materials)</subject><subject>Deformation</subject><subject>Electrochemistry</subject><subject>ENERGY STORAGE</subject><subject>External pressure</subject><subject>Finite element method</subject><subject>Fractures</subject><subject>Li metal</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>mechano-electrochemical reaction</subject><subject>Modelling</subject><subject>Neutron radiography</subject><subject>operando neutron imaging</subject><subject>Origins</subject><subject>soft short</subject><subject>Solid mechanics</subject><subject>solid-state batteries</subject><subject>Tomography</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUc1uGyEYXEWtlDTNtWfUnO3C4oXl6LpJUyk_BzdRbwh_CzERBgdwKufkR-gDNMq7-UnC1lV67OkbfcyMvmGq6gPBQ4Jx_Ul1ZjGscU0xF6Ldqw4II2xAcd2-ecXkx371LqU7jAnndHRQPV8G3-mU4wqyfdBujW5sWilnH62_Rcp36Lq8x5QL7Dd5rtGFhrnyYbv5deI05NgjmOuFBeXQVbS31icUDNpufk-DyWg6DzFvN09_7MpyErVeFrN-ZT0aO1cMpsHZrp9ZZY0-q5x1tDq9r94a5ZI--jsPq-vTk--Ts8H51ddvk_H5AGg7agcgKGeMz0p209CmYQDQUU1BGdpgNSK8UUZgxRlQLXhDGjoDRUDP6s7UakYPq48735CylQlsLiEheF8CyhpzRoQopOMdaRnD_ar8mrwLq-jLXbIWeNQShjErrOGOBTGkFLWRy2gXKq4lwbJvSvZNydemikDsBD-t0-v_sOX4y-nFP-0L3lWiSQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Cao, Daxian</creator><creator>Zhang, Kena</creator><creator>Li, Wei</creator><creator>Zhang, Yuxuan</creator><creator>Ji, Tongtai</creator><creator>Zhao, Xianhui</creator><creator>Cakmak, Ercan</creator><creator>Zhu, Juner</creator><creator>Cao, Ye</creator><creator>Zhu, Hongli</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0083-1408</orcidid><orcidid>https://orcid.org/0000-0003-1733-4333</orcidid><orcidid>https://orcid.org/0000-0003-2106-6861</orcidid><orcidid>https://orcid.org/0000000321066861</orcidid><orcidid>https://orcid.org/0000000172724815</orcidid><orcidid>https://orcid.org/0000000317334333</orcidid><orcidid>https://orcid.org/0000000200831408</orcidid></search><sort><creationdate>20231201</creationdate><title>Nondestructively Visualizing and Understanding the Mechano‐Electro‐chemical Origins of “Soft Short” and “Creeping” in All‐Solid‐State Batteries</title><author>Cao, Daxian ; Zhang, Kena ; Li, Wei ; Zhang, Yuxuan ; Ji, Tongtai ; Zhao, Xianhui ; Cakmak, Ercan ; Zhu, Juner ; Cao, Ye ; Zhu, Hongli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3848-c937667b307f53556cccd3e3caf350a4175af90a76c3e975153bca1ceb2df2ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computed tomography</topic><topic>Creep (materials)</topic><topic>Deformation</topic><topic>Electrochemistry</topic><topic>ENERGY STORAGE</topic><topic>External pressure</topic><topic>Finite element method</topic><topic>Fractures</topic><topic>Li metal</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>mechano-electrochemical reaction</topic><topic>Modelling</topic><topic>Neutron radiography</topic><topic>operando neutron imaging</topic><topic>Origins</topic><topic>soft short</topic><topic>Solid mechanics</topic><topic>solid-state batteries</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Daxian</creatorcontrib><creatorcontrib>Zhang, Kena</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Yuxuan</creatorcontrib><creatorcontrib>Ji, Tongtai</creatorcontrib><creatorcontrib>Zhao, Xianhui</creatorcontrib><creatorcontrib>Cakmak, Ercan</creatorcontrib><creatorcontrib>Zhu, Juner</creatorcontrib><creatorcontrib>Cao, Ye</creatorcontrib><creatorcontrib>Zhu, Hongli</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Daxian</au><au>Zhang, Kena</au><au>Li, Wei</au><au>Zhang, Yuxuan</au><au>Ji, Tongtai</au><au>Zhao, Xianhui</au><au>Cakmak, Ercan</au><au>Zhu, Juner</au><au>Cao, Ye</au><au>Zhu, Hongli</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondestructively Visualizing and Understanding the Mechano‐Electro‐chemical Origins of “Soft Short” and “Creeping” in All‐Solid‐State Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>33</volume><issue>52</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>All‐solid‐state Li‐metal batteries (ASLMBs) represent a significant breakthrough in the quest to overcome limitations associated with traditional Li‐ion batteries, particularly in energy density and safety aspects. However, widespread implementation is stymied due to a lack of profound understanding of the complex mechano‐electro‐chemical behavior of Li metal in the ASLMBs. Herein, operando neutron imaging and X‐ray computed tomography (XCT) are leveraged to nondestructively visualize Li behaviors within ASLMBs. This approach offers real‐time observations of Li evolutions, both pre‐ and post‐ occurrence of a “soft short”. The coordination of 2D neutron radiography and 3D neutron tomography enables charting of the terrain of Li metal deformation operando. Concurrently, XCT offers a 3D insight into the internal structure of the battery following a “soft short”. Despite the manifestation of a “soft short”, the persistence of Faradaic processes is observed. To study the elusive “soft short” , phase field modeling is coupled with electrochemistry and solid mechanics theory. The research unravels how external pressure curbs dendrite growth, potentially leading to dendrite fractures and thus uncovering the origins of both “soft” and “hard” shorts in ASLMBs. Furthermore, by harnessing finite element modeling, it dive deeper into the mechanical deformation and the fluidity of Li metal.
This work successfully visualizes the Li deformation and the “soft short” in all‐solid‐state Li metal batteries using operando neutron imaging. It unravels how external pressure curbs dendrite growth, but also leads to dendrite fractures, uncovering the origins of both “soft” and “hard” shorts in Li metal batteries. Furthermore, finite element modeling enables a deeper dive into the deformation and the fluidity of Li metal.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202307998</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0083-1408</orcidid><orcidid>https://orcid.org/0000-0003-1733-4333</orcidid><orcidid>https://orcid.org/0000-0003-2106-6861</orcidid><orcidid>https://orcid.org/0000000321066861</orcidid><orcidid>https://orcid.org/0000000172724815</orcidid><orcidid>https://orcid.org/0000000317334333</orcidid><orcidid>https://orcid.org/0000000200831408</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-12, Vol.33 (52), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_osti_scitechconnect_2076199 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Computed tomography Creep (materials) Deformation Electrochemistry ENERGY STORAGE External pressure Finite element method Fractures Li metal Lithium-ion batteries Materials science Mathematical models mechano-electrochemical reaction Modelling Neutron radiography operando neutron imaging Origins soft short Solid mechanics solid-state batteries Tomography |
title | Nondestructively Visualizing and Understanding the Mechano‐Electro‐chemical Origins of “Soft Short” and “Creeping” in All‐Solid‐State Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondestructively%20Visualizing%20and%20Understanding%20the%20Mechano%E2%80%90Electro%E2%80%90chemical%20Origins%20of%20%E2%80%9CSoft%20Short%E2%80%9D%20and%20%E2%80%9CCreeping%E2%80%9D%20in%20All%E2%80%90Solid%E2%80%90State%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Cao,%20Daxian&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20High%20Flux%20Isotope%20Reactor%20(HFIR)&rft.date=2023-12-01&rft.volume=33&rft.issue=52&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202307998&rft_dat=%3Cproquest_osti_%3E2904816006%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904816006&rft_id=info:pmid/&rfr_iscdi=true |