Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle

Some plasma propulsion concepts rely on a strong magnetic field to guide the plasma flow through the thruster nozzle. The question then arises of how the magnetically confined plasma can detach from the spacecraft. This work presents a magnetohydrodynamic (MHD) detachment scenario in which the plasm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2005-04, Vol.12 (4)
Hauptverfasser: Arefiev, Alexey V., Breizman, Boris N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physics of plasmas
container_volume 12
creator Arefiev, Alexey V.
Breizman, Boris N.
description Some plasma propulsion concepts rely on a strong magnetic field to guide the plasma flow through the thruster nozzle. The question then arises of how the magnetically confined plasma can detach from the spacecraft. This work presents a magnetohydrodynamic (MHD) detachment scenario in which the plasma flow stretches the magnetic field lines to infinity. Detachment takes place after the energy density of the expanding magnetic field drops below the kinetic energy density of the plasma. As plasma flows along the magnetic field lines, the originally sub-Alfvénic flow becomes super-Alfvénic; this transition is similar to what occurs in the solar wind. In order to describe the detachment quantitatively, the ideal MHD equations have been solved for a cold plasma flow in a slowly diverging nozzle. The solution exhibits a well-behaved transition from sub- to super-Alfvénic flow inside the nozzle and a rarefaction wave at the edge of the outgoing flow. It is shown that efficient detachment is feasible if the nozzle is sufficiently long.
doi_str_mv 10.1063/1.1875632
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20736540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-o183t-bace02a641f8300aee8bb1c3f49fda791e4c68165c24a97c44b35312b28e96d33</originalsourceid><addsrcrecordid>eNp90EFLAzEQBeAgCtbqwX8Q8CZsTTbZJHuUYlWoeFHwFmazszbSTcomCNtfb2sL3jzNHL73Do-Qa85mnClxx2fc6EqJ8oRMODN1oZWWp_tfs0Ip-XFOLlL6YoxJVZkJWbzAZ8AcV2M7xHYM0HtHk8MAg480dnSzhtQDbTGDW_UYMvWBAu1_Yzsb4na7xkty1sE64dXxTsn74uFt_lQsXx-f5_fLInIjctGAQ1aCkrwzgjFANE3Dnehk3bWga47SKcNV5UoJtXZSNqISvGxKg7VqhZiSm0NvTNnb5HxGt3IxBHTZlkwLVUm2U7cHtQeQfQx2M_gehtF-x8Fye9zIbtruP8yZ3Y_6FxA_P9tpLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Arefiev, Alexey V. ; Breizman, Boris N.</creator><creatorcontrib>Arefiev, Alexey V. ; Breizman, Boris N.</creatorcontrib><description>Some plasma propulsion concepts rely on a strong magnetic field to guide the plasma flow through the thruster nozzle. The question then arises of how the magnetically confined plasma can detach from the spacecraft. This work presents a magnetohydrodynamic (MHD) detachment scenario in which the plasma flow stretches the magnetic field lines to infinity. Detachment takes place after the energy density of the expanding magnetic field drops below the kinetic energy density of the plasma. As plasma flows along the magnetic field lines, the originally sub-Alfvénic flow becomes super-Alfvénic; this transition is similar to what occurs in the solar wind. In order to describe the detachment quantitatively, the ideal MHD equations have been solved for a cold plasma flow in a slowly diverging nozzle. The solution exhibits a well-behaved transition from sub- to super-Alfvénic flow inside the nozzle and a rarefaction wave at the edge of the outgoing flow. It is shown that efficient detachment is feasible if the nozzle is sufficiently long.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.1875632</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; COLD PLASMA ; ENERGY DENSITY ; MAGNETIC CONFINEMENT ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; NOZZLES ; PLASMA DENSITY ; PLASMA GUNS ; PROPULSION ; THRUSTERS</subject><ispartof>Physics of plasmas, 2005-04, Vol.12 (4)</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.1875632$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,315,781,785,795,886,1560,4513,27929,27930,76389,76395</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20736540$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Arefiev, Alexey V.</creatorcontrib><creatorcontrib>Breizman, Boris N.</creatorcontrib><title>Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle</title><title>Physics of plasmas</title><description>Some plasma propulsion concepts rely on a strong magnetic field to guide the plasma flow through the thruster nozzle. The question then arises of how the magnetically confined plasma can detach from the spacecraft. This work presents a magnetohydrodynamic (MHD) detachment scenario in which the plasma flow stretches the magnetic field lines to infinity. Detachment takes place after the energy density of the expanding magnetic field drops below the kinetic energy density of the plasma. As plasma flows along the magnetic field lines, the originally sub-Alfvénic flow becomes super-Alfvénic; this transition is similar to what occurs in the solar wind. In order to describe the detachment quantitatively, the ideal MHD equations have been solved for a cold plasma flow in a slowly diverging nozzle. The solution exhibits a well-behaved transition from sub- to super-Alfvénic flow inside the nozzle and a rarefaction wave at the edge of the outgoing flow. It is shown that efficient detachment is feasible if the nozzle is sufficiently long.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>COLD PLASMA</subject><subject>ENERGY DENSITY</subject><subject>MAGNETIC CONFINEMENT</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>NOZZLES</subject><subject>PLASMA DENSITY</subject><subject>PLASMA GUNS</subject><subject>PROPULSION</subject><subject>THRUSTERS</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp90EFLAzEQBeAgCtbqwX8Q8CZsTTbZJHuUYlWoeFHwFmazszbSTcomCNtfb2sL3jzNHL73Do-Qa85mnClxx2fc6EqJ8oRMODN1oZWWp_tfs0Ip-XFOLlL6YoxJVZkJWbzAZ8AcV2M7xHYM0HtHk8MAg480dnSzhtQDbTGDW_UYMvWBAu1_Yzsb4na7xkty1sE64dXxTsn74uFt_lQsXx-f5_fLInIjctGAQ1aCkrwzgjFANE3Dnehk3bWga47SKcNV5UoJtXZSNqISvGxKg7VqhZiSm0NvTNnb5HxGt3IxBHTZlkwLVUm2U7cHtQeQfQx2M_gehtF-x8Fye9zIbtruP8yZ3Y_6FxA_P9tpLA</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Arefiev, Alexey V.</creator><creator>Breizman, Boris N.</creator><scope>OTOTI</scope></search><sort><creationdate>20050401</creationdate><title>Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle</title><author>Arefiev, Alexey V. ; Breizman, Boris N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o183t-bace02a641f8300aee8bb1c3f49fda791e4c68165c24a97c44b35312b28e96d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>COLD PLASMA</topic><topic>ENERGY DENSITY</topic><topic>MAGNETIC CONFINEMENT</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>NOZZLES</topic><topic>PLASMA DENSITY</topic><topic>PLASMA GUNS</topic><topic>PROPULSION</topic><topic>THRUSTERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arefiev, Alexey V.</creatorcontrib><creatorcontrib>Breizman, Boris N.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arefiev, Alexey V.</au><au>Breizman, Boris N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle</atitle><jtitle>Physics of plasmas</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>12</volume><issue>4</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Some plasma propulsion concepts rely on a strong magnetic field to guide the plasma flow through the thruster nozzle. The question then arises of how the magnetically confined plasma can detach from the spacecraft. This work presents a magnetohydrodynamic (MHD) detachment scenario in which the plasma flow stretches the magnetic field lines to infinity. Detachment takes place after the energy density of the expanding magnetic field drops below the kinetic energy density of the plasma. As plasma flows along the magnetic field lines, the originally sub-Alfvénic flow becomes super-Alfvénic; this transition is similar to what occurs in the solar wind. In order to describe the detachment quantitatively, the ideal MHD equations have been solved for a cold plasma flow in a slowly diverging nozzle. The solution exhibits a well-behaved transition from sub- to super-Alfvénic flow inside the nozzle and a rarefaction wave at the edge of the outgoing flow. It is shown that efficient detachment is feasible if the nozzle is sufficiently long.</abstract><cop>United States</cop><doi>10.1063/1.1875632</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2005-04, Vol.12 (4)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_20736540
source AIP Journals Complete; AIP Digital Archive
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
COLD PLASMA
ENERGY DENSITY
MAGNETIC CONFINEMENT
MAGNETIC FIELDS
MAGNETOHYDRODYNAMICS
NOZZLES
PLASMA DENSITY
PLASMA GUNS
PROPULSION
THRUSTERS
title Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodynamic%20scenario%20of%20plasma%20detachment%20in%20a%20magnetic%20nozzle&rft.jtitle=Physics%20of%20plasmas&rft.au=Arefiev,%20Alexey%20V.&rft.date=2005-04-01&rft.volume=12&rft.issue=4&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.1875632&rft_dat=%3Cscitation_osti_%3Epop%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true