Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle
Some plasma propulsion concepts rely on a strong magnetic field to guide the plasma flow through the thruster nozzle. The question then arises of how the magnetically confined plasma can detach from the spacecraft. This work presents a magnetohydrodynamic (MHD) detachment scenario in which the plasm...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2005-04, Vol.12 (4) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 12 |
creator | Arefiev, Alexey V. Breizman, Boris N. |
description | Some plasma propulsion concepts rely on a strong magnetic field to guide the plasma flow through the thruster nozzle. The question then arises of how the magnetically confined plasma can detach from the spacecraft. This work presents a magnetohydrodynamic (MHD) detachment scenario in which the plasma flow stretches the magnetic field lines to infinity. Detachment takes place after the energy density of the expanding magnetic field drops below the kinetic energy density of the plasma. As plasma flows along the magnetic field lines, the originally sub-Alfvénic flow becomes super-Alfvénic; this transition is similar to what occurs in the solar wind. In order to describe the detachment quantitatively, the ideal MHD equations have been solved for a cold plasma flow in a slowly diverging nozzle. The solution exhibits a well-behaved transition from sub- to super-Alfvénic flow inside the nozzle and a rarefaction wave at the edge of the outgoing flow. It is shown that efficient detachment is feasible if the nozzle is sufficiently long. |
doi_str_mv | 10.1063/1.1875632 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20736540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-o183t-bace02a641f8300aee8bb1c3f49fda791e4c68165c24a97c44b35312b28e96d33</originalsourceid><addsrcrecordid>eNp90EFLAzEQBeAgCtbqwX8Q8CZsTTbZJHuUYlWoeFHwFmazszbSTcomCNtfb2sL3jzNHL73Do-Qa85mnClxx2fc6EqJ8oRMODN1oZWWp_tfs0Ip-XFOLlL6YoxJVZkJWbzAZ8AcV2M7xHYM0HtHk8MAg480dnSzhtQDbTGDW_UYMvWBAu1_Yzsb4na7xkty1sE64dXxTsn74uFt_lQsXx-f5_fLInIjctGAQ1aCkrwzgjFANE3Dnehk3bWga47SKcNV5UoJtXZSNqISvGxKg7VqhZiSm0NvTNnb5HxGt3IxBHTZlkwLVUm2U7cHtQeQfQx2M_gehtF-x8Fye9zIbtruP8yZ3Y_6FxA_P9tpLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Arefiev, Alexey V. ; Breizman, Boris N.</creator><creatorcontrib>Arefiev, Alexey V. ; Breizman, Boris N.</creatorcontrib><description>Some plasma propulsion concepts rely on a strong magnetic field to guide the plasma flow through the thruster nozzle. The question then arises of how the magnetically confined plasma can detach from the spacecraft. This work presents a magnetohydrodynamic (MHD) detachment scenario in which the plasma flow stretches the magnetic field lines to infinity. Detachment takes place after the energy density of the expanding magnetic field drops below the kinetic energy density of the plasma. As plasma flows along the magnetic field lines, the originally sub-Alfvénic flow becomes super-Alfvénic; this transition is similar to what occurs in the solar wind. In order to describe the detachment quantitatively, the ideal MHD equations have been solved for a cold plasma flow in a slowly diverging nozzle. The solution exhibits a well-behaved transition from sub- to super-Alfvénic flow inside the nozzle and a rarefaction wave at the edge of the outgoing flow. It is shown that efficient detachment is feasible if the nozzle is sufficiently long.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.1875632</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; COLD PLASMA ; ENERGY DENSITY ; MAGNETIC CONFINEMENT ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; NOZZLES ; PLASMA DENSITY ; PLASMA GUNS ; PROPULSION ; THRUSTERS</subject><ispartof>Physics of plasmas, 2005-04, Vol.12 (4)</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.1875632$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,315,781,785,795,886,1560,4513,27929,27930,76389,76395</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20736540$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Arefiev, Alexey V.</creatorcontrib><creatorcontrib>Breizman, Boris N.</creatorcontrib><title>Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle</title><title>Physics of plasmas</title><description>Some plasma propulsion concepts rely on a strong magnetic field to guide the plasma flow through the thruster nozzle. The question then arises of how the magnetically confined plasma can detach from the spacecraft. This work presents a magnetohydrodynamic (MHD) detachment scenario in which the plasma flow stretches the magnetic field lines to infinity. Detachment takes place after the energy density of the expanding magnetic field drops below the kinetic energy density of the plasma. As plasma flows along the magnetic field lines, the originally sub-Alfvénic flow becomes super-Alfvénic; this transition is similar to what occurs in the solar wind. In order to describe the detachment quantitatively, the ideal MHD equations have been solved for a cold plasma flow in a slowly diverging nozzle. The solution exhibits a well-behaved transition from sub- to super-Alfvénic flow inside the nozzle and a rarefaction wave at the edge of the outgoing flow. It is shown that efficient detachment is feasible if the nozzle is sufficiently long.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>COLD PLASMA</subject><subject>ENERGY DENSITY</subject><subject>MAGNETIC CONFINEMENT</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>NOZZLES</subject><subject>PLASMA DENSITY</subject><subject>PLASMA GUNS</subject><subject>PROPULSION</subject><subject>THRUSTERS</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp90EFLAzEQBeAgCtbqwX8Q8CZsTTbZJHuUYlWoeFHwFmazszbSTcomCNtfb2sL3jzNHL73Do-Qa85mnClxx2fc6EqJ8oRMODN1oZWWp_tfs0Ip-XFOLlL6YoxJVZkJWbzAZ8AcV2M7xHYM0HtHk8MAg480dnSzhtQDbTGDW_UYMvWBAu1_Yzsb4na7xkty1sE64dXxTsn74uFt_lQsXx-f5_fLInIjctGAQ1aCkrwzgjFANE3Dnehk3bWga47SKcNV5UoJtXZSNqISvGxKg7VqhZiSm0NvTNnb5HxGt3IxBHTZlkwLVUm2U7cHtQeQfQx2M_gehtF-x8Fye9zIbtruP8yZ3Y_6FxA_P9tpLA</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Arefiev, Alexey V.</creator><creator>Breizman, Boris N.</creator><scope>OTOTI</scope></search><sort><creationdate>20050401</creationdate><title>Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle</title><author>Arefiev, Alexey V. ; Breizman, Boris N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o183t-bace02a641f8300aee8bb1c3f49fda791e4c68165c24a97c44b35312b28e96d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>COLD PLASMA</topic><topic>ENERGY DENSITY</topic><topic>MAGNETIC CONFINEMENT</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>NOZZLES</topic><topic>PLASMA DENSITY</topic><topic>PLASMA GUNS</topic><topic>PROPULSION</topic><topic>THRUSTERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arefiev, Alexey V.</creatorcontrib><creatorcontrib>Breizman, Boris N.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arefiev, Alexey V.</au><au>Breizman, Boris N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle</atitle><jtitle>Physics of plasmas</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>12</volume><issue>4</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Some plasma propulsion concepts rely on a strong magnetic field to guide the plasma flow through the thruster nozzle. The question then arises of how the magnetically confined plasma can detach from the spacecraft. This work presents a magnetohydrodynamic (MHD) detachment scenario in which the plasma flow stretches the magnetic field lines to infinity. Detachment takes place after the energy density of the expanding magnetic field drops below the kinetic energy density of the plasma. As plasma flows along the magnetic field lines, the originally sub-Alfvénic flow becomes super-Alfvénic; this transition is similar to what occurs in the solar wind. In order to describe the detachment quantitatively, the ideal MHD equations have been solved for a cold plasma flow in a slowly diverging nozzle. The solution exhibits a well-behaved transition from sub- to super-Alfvénic flow inside the nozzle and a rarefaction wave at the edge of the outgoing flow. It is shown that efficient detachment is feasible if the nozzle is sufficiently long.</abstract><cop>United States</cop><doi>10.1063/1.1875632</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2005-04, Vol.12 (4) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_20736540 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY COLD PLASMA ENERGY DENSITY MAGNETIC CONFINEMENT MAGNETIC FIELDS MAGNETOHYDRODYNAMICS NOZZLES PLASMA DENSITY PLASMA GUNS PROPULSION THRUSTERS |
title | Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodynamic%20scenario%20of%20plasma%20detachment%20in%20a%20magnetic%20nozzle&rft.jtitle=Physics%20of%20plasmas&rft.au=Arefiev,%20Alexey%20V.&rft.date=2005-04-01&rft.volume=12&rft.issue=4&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.1875632&rft_dat=%3Cscitation_osti_%3Epop%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |