Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector

The analysis of x-ray spectra is important for quality assurance (QA) and quality control (QC) of radiographic systems. The aim of this study is to measure the diagnostic x-ray spectra under clinical conditions using a high-resolution Schottky CdTe detector. Under clinical conditions, the direct mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2005-06, Vol.32 (6), p.1542-1547
Hauptverfasser: Maeda, Koji, Matsumoto, Masao, Taniguchi, Akira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1547
container_issue 6
container_start_page 1542
container_title Medical physics (Lancaster)
container_volume 32
creator Maeda, Koji
Matsumoto, Masao
Taniguchi, Akira
description The analysis of x-ray spectra is important for quality assurance (QA) and quality control (QC) of radiographic systems. The aim of this study is to measure the diagnostic x-ray spectra under clinical conditions using a high-resolution Schottky CdTe detector. Under clinical conditions, the direct measurement of a diagnostic spectrum is difficult because of the high photon fluence rates that cause significant detector photon pile-up. An alternative way of measuring the output spectra from a tube is first to measure the 90 deg Compton scattered photons from a given sample. With this set-up detector, pile-up is not a problem. From the scattered spectrum one can then use an energy correction and the Klein–Nishina function to reconstruct the actual spectrum incident upon the scattering sample. The verification of whether our spectra measured by the Compton method are accurate was accomplished by comparing exposure rates calculated from the reconstructed spectra to those measured with an ionization chamber. We used aluminum (Al) filtration ranging in thickness from 0 to 6 mm. The half value layers (HVLs) obtained for a 70 kV beam were 2.78 mm via the ionization chamber measurements and 2.93 mm via the spectral measurements. For a 100 kV beam we obtained 3.98 and 4.32 mm. The small differences in HVLs obtained by both techniques suggest that Compton scatter spectroscopy with a Schottky CdTe detector is suitable for measuring the diagnostic x-ray spectra and useful for QA and QC of clinical x-ray equipment.
doi_str_mv 10.1118/1.1921647
format Article
fullrecord <record><control><sourceid>wiley_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20726054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP1647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4857-f8bd7eae65517f1a31c17200d027b112c60971662cfd45ccfce10134dfb8d3c83</originalsourceid><addsrcrecordid>eNp90F1r2zAYBWAxOpY020X_QBHsqgW17yvLlnM5QvcBHRs0uzaKPmK3sWUkeVv-_WwctsFYr3Tz6OjoEHKBcIOI5S3e4JpjIeQLsuRCZkxwWJ-RJcBaMC4gX5DzGB8BoMhyeEUWWABmEvmS1Bvf9sl3LGqVkg1Nt6etVXEItrVdot5R06h952NqNP3JgjrS2FudwtDSIU68bvY1Czb6w5Aa39EHXfuUno50Y7aWGptG7cNr8tKpQ7RvTueKfHt_t918ZPdfPnzavLtnWpS5ZK7cGWmVLfIcpUOVoUbJAQxwuUPkuoC1xKLg2hmRa-20xfEvwrhdaTJdZivyds6dGldRN-PztfZdN7aoOEheQC5GdTUrHXyMwbqqD02rwrFCqKZNK6xOm472crb9sGut-SNPI46AzeBHc7DH_ydVn7-eAq9nP7VT02a_73z34S_fG_cc_rfqL6aom_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Maeda, Koji ; Matsumoto, Masao ; Taniguchi, Akira</creator><creatorcontrib>Maeda, Koji ; Matsumoto, Masao ; Taniguchi, Akira</creatorcontrib><description>The analysis of x-ray spectra is important for quality assurance (QA) and quality control (QC) of radiographic systems. The aim of this study is to measure the diagnostic x-ray spectra under clinical conditions using a high-resolution Schottky CdTe detector. Under clinical conditions, the direct measurement of a diagnostic spectrum is difficult because of the high photon fluence rates that cause significant detector photon pile-up. An alternative way of measuring the output spectra from a tube is first to measure the 90 deg Compton scattered photons from a given sample. With this set-up detector, pile-up is not a problem. From the scattered spectrum one can then use an energy correction and the Klein–Nishina function to reconstruct the actual spectrum incident upon the scattering sample. The verification of whether our spectra measured by the Compton method are accurate was accomplished by comparing exposure rates calculated from the reconstructed spectra to those measured with an ionization chamber. We used aluminum (Al) filtration ranging in thickness from 0 to 6 mm. The half value layers (HVLs) obtained for a 70 kV beam were 2.78 mm via the ionization chamber measurements and 2.93 mm via the spectral measurements. For a 100 kV beam we obtained 3.98 and 4.32 mm. The small differences in HVLs obtained by both techniques suggest that Compton scatter spectroscopy with a Schottky CdTe detector is suitable for measuring the diagnostic x-ray spectra and useful for QA and QC of clinical x-ray equipment.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1921647</identifier><identifier>PMID: 16013712</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Aluminum - chemistry ; Aluminum - metabolism ; Carbon ; CDTE SEMICONDUCTOR DETECTORS ; COMPTON EFFECT ; compton scatter spectroscopy ; Compton scattering ; COMPUTERIZED SIMULATION ; diagnostic radiography ; diagnostic x‐ray spectrum ; high‐resolution Schottky CdTe detector ; Humans ; II‐VI semiconductors ; ionisation chambers ; IONIZATION CHAMBERS ; Ions ; Models, Statistical ; MONTE CARLO METHOD ; Monte Carlo methods ; Monte Carlo simulation ; Phantoms, Imaging ; Photon scattering ; PHOTONS ; QUALITY ASSURANCE ; QUALITY CONTROL ; Radiation Dosage ; RADIATION PROTECTION AND DOSIMETRY ; Radiographic Image Interpretation, Computer-Assisted - instrumentation ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiography ; Scattering, Radiation ; Schottky barriers ; SPECTROSCOPY ; STRIPPING ; stripping procedure ; X-RAY EQUIPMENT ; X-RAY SPECTRA ; X-Rays ; X‐ray and EXAFS ; X‐ray detectors ; X‐ray scattering</subject><ispartof>Medical physics (Lancaster), 2005-06, Vol.32 (6), p.1542-1547</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2005 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4857-f8bd7eae65517f1a31c17200d027b112c60971662cfd45ccfce10134dfb8d3c83</citedby><cites>FETCH-LOGICAL-c4857-f8bd7eae65517f1a31c17200d027b112c60971662cfd45ccfce10134dfb8d3c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1921647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1921647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16013712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20726054$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maeda, Koji</creatorcontrib><creatorcontrib>Matsumoto, Masao</creatorcontrib><creatorcontrib>Taniguchi, Akira</creatorcontrib><title>Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>The analysis of x-ray spectra is important for quality assurance (QA) and quality control (QC) of radiographic systems. The aim of this study is to measure the diagnostic x-ray spectra under clinical conditions using a high-resolution Schottky CdTe detector. Under clinical conditions, the direct measurement of a diagnostic spectrum is difficult because of the high photon fluence rates that cause significant detector photon pile-up. An alternative way of measuring the output spectra from a tube is first to measure the 90 deg Compton scattered photons from a given sample. With this set-up detector, pile-up is not a problem. From the scattered spectrum one can then use an energy correction and the Klein–Nishina function to reconstruct the actual spectrum incident upon the scattering sample. The verification of whether our spectra measured by the Compton method are accurate was accomplished by comparing exposure rates calculated from the reconstructed spectra to those measured with an ionization chamber. We used aluminum (Al) filtration ranging in thickness from 0 to 6 mm. The half value layers (HVLs) obtained for a 70 kV beam were 2.78 mm via the ionization chamber measurements and 2.93 mm via the spectral measurements. For a 100 kV beam we obtained 3.98 and 4.32 mm. The small differences in HVLs obtained by both techniques suggest that Compton scatter spectroscopy with a Schottky CdTe detector is suitable for measuring the diagnostic x-ray spectra and useful for QA and QC of clinical x-ray equipment.</description><subject>Aluminum - chemistry</subject><subject>Aluminum - metabolism</subject><subject>Carbon</subject><subject>CDTE SEMICONDUCTOR DETECTORS</subject><subject>COMPTON EFFECT</subject><subject>compton scatter spectroscopy</subject><subject>Compton scattering</subject><subject>COMPUTERIZED SIMULATION</subject><subject>diagnostic radiography</subject><subject>diagnostic x‐ray spectrum</subject><subject>high‐resolution Schottky CdTe detector</subject><subject>Humans</subject><subject>II‐VI semiconductors</subject><subject>ionisation chambers</subject><subject>IONIZATION CHAMBERS</subject><subject>Ions</subject><subject>Models, Statistical</subject><subject>MONTE CARLO METHOD</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Phantoms, Imaging</subject><subject>Photon scattering</subject><subject>PHOTONS</subject><subject>QUALITY ASSURANCE</subject><subject>QUALITY CONTROL</subject><subject>Radiation Dosage</subject><subject>RADIATION PROTECTION AND DOSIMETRY</subject><subject>Radiographic Image Interpretation, Computer-Assisted - instrumentation</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiography</subject><subject>Scattering, Radiation</subject><subject>Schottky barriers</subject><subject>SPECTROSCOPY</subject><subject>STRIPPING</subject><subject>stripping procedure</subject><subject>X-RAY EQUIPMENT</subject><subject>X-RAY SPECTRA</subject><subject>X-Rays</subject><subject>X‐ray and EXAFS</subject><subject>X‐ray detectors</subject><subject>X‐ray scattering</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90F1r2zAYBWAxOpY020X_QBHsqgW17yvLlnM5QvcBHRs0uzaKPmK3sWUkeVv-_WwctsFYr3Tz6OjoEHKBcIOI5S3e4JpjIeQLsuRCZkxwWJ-RJcBaMC4gX5DzGB8BoMhyeEUWWABmEvmS1Bvf9sl3LGqVkg1Nt6etVXEItrVdot5R06h952NqNP3JgjrS2FudwtDSIU68bvY1Czb6w5Aa39EHXfuUno50Y7aWGptG7cNr8tKpQ7RvTueKfHt_t918ZPdfPnzavLtnWpS5ZK7cGWmVLfIcpUOVoUbJAQxwuUPkuoC1xKLg2hmRa-20xfEvwrhdaTJdZivyds6dGldRN-PztfZdN7aoOEheQC5GdTUrHXyMwbqqD02rwrFCqKZNK6xOm472crb9sGut-SNPI46AzeBHc7DH_ydVn7-eAq9nP7VT02a_73z34S_fG_cc_rfqL6aom_w</recordid><startdate>200506</startdate><enddate>200506</enddate><creator>Maeda, Koji</creator><creator>Matsumoto, Masao</creator><creator>Taniguchi, Akira</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>200506</creationdate><title>Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector</title><author>Maeda, Koji ; Matsumoto, Masao ; Taniguchi, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4857-f8bd7eae65517f1a31c17200d027b112c60971662cfd45ccfce10134dfb8d3c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aluminum - chemistry</topic><topic>Aluminum - metabolism</topic><topic>Carbon</topic><topic>CDTE SEMICONDUCTOR DETECTORS</topic><topic>COMPTON EFFECT</topic><topic>compton scatter spectroscopy</topic><topic>Compton scattering</topic><topic>COMPUTERIZED SIMULATION</topic><topic>diagnostic radiography</topic><topic>diagnostic x‐ray spectrum</topic><topic>high‐resolution Schottky CdTe detector</topic><topic>Humans</topic><topic>II‐VI semiconductors</topic><topic>ionisation chambers</topic><topic>IONIZATION CHAMBERS</topic><topic>Ions</topic><topic>Models, Statistical</topic><topic>MONTE CARLO METHOD</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Phantoms, Imaging</topic><topic>Photon scattering</topic><topic>PHOTONS</topic><topic>QUALITY ASSURANCE</topic><topic>QUALITY CONTROL</topic><topic>Radiation Dosage</topic><topic>RADIATION PROTECTION AND DOSIMETRY</topic><topic>Radiographic Image Interpretation, Computer-Assisted - instrumentation</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiography</topic><topic>Scattering, Radiation</topic><topic>Schottky barriers</topic><topic>SPECTROSCOPY</topic><topic>STRIPPING</topic><topic>stripping procedure</topic><topic>X-RAY EQUIPMENT</topic><topic>X-RAY SPECTRA</topic><topic>X-Rays</topic><topic>X‐ray and EXAFS</topic><topic>X‐ray detectors</topic><topic>X‐ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maeda, Koji</creatorcontrib><creatorcontrib>Matsumoto, Masao</creatorcontrib><creatorcontrib>Taniguchi, Akira</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maeda, Koji</au><au>Matsumoto, Masao</au><au>Taniguchi, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2005-06</date><risdate>2005</risdate><volume>32</volume><issue>6</issue><spage>1542</spage><epage>1547</epage><pages>1542-1547</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>The analysis of x-ray spectra is important for quality assurance (QA) and quality control (QC) of radiographic systems. The aim of this study is to measure the diagnostic x-ray spectra under clinical conditions using a high-resolution Schottky CdTe detector. Under clinical conditions, the direct measurement of a diagnostic spectrum is difficult because of the high photon fluence rates that cause significant detector photon pile-up. An alternative way of measuring the output spectra from a tube is first to measure the 90 deg Compton scattered photons from a given sample. With this set-up detector, pile-up is not a problem. From the scattered spectrum one can then use an energy correction and the Klein–Nishina function to reconstruct the actual spectrum incident upon the scattering sample. The verification of whether our spectra measured by the Compton method are accurate was accomplished by comparing exposure rates calculated from the reconstructed spectra to those measured with an ionization chamber. We used aluminum (Al) filtration ranging in thickness from 0 to 6 mm. The half value layers (HVLs) obtained for a 70 kV beam were 2.78 mm via the ionization chamber measurements and 2.93 mm via the spectral measurements. For a 100 kV beam we obtained 3.98 and 4.32 mm. The small differences in HVLs obtained by both techniques suggest that Compton scatter spectroscopy with a Schottky CdTe detector is suitable for measuring the diagnostic x-ray spectra and useful for QA and QC of clinical x-ray equipment.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>16013712</pmid><doi>10.1118/1.1921647</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2005-06, Vol.32 (6), p.1542-1547
issn 0094-2405
2473-4209
language eng
recordid cdi_osti_scitechconnect_20726054
source MEDLINE; Wiley Online Library All Journals
subjects Aluminum - chemistry
Aluminum - metabolism
Carbon
CDTE SEMICONDUCTOR DETECTORS
COMPTON EFFECT
compton scatter spectroscopy
Compton scattering
COMPUTERIZED SIMULATION
diagnostic radiography
diagnostic x‐ray spectrum
high‐resolution Schottky CdTe detector
Humans
II‐VI semiconductors
ionisation chambers
IONIZATION CHAMBERS
Ions
Models, Statistical
MONTE CARLO METHOD
Monte Carlo methods
Monte Carlo simulation
Phantoms, Imaging
Photon scattering
PHOTONS
QUALITY ASSURANCE
QUALITY CONTROL
Radiation Dosage
RADIATION PROTECTION AND DOSIMETRY
Radiographic Image Interpretation, Computer-Assisted - instrumentation
Radiographic Image Interpretation, Computer-Assisted - methods
Radiography
Scattering, Radiation
Schottky barriers
SPECTROSCOPY
STRIPPING
stripping procedure
X-RAY EQUIPMENT
X-RAY SPECTRA
X-Rays
X‐ray and EXAFS
X‐ray detectors
X‐ray scattering
title Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compton-scattering%20measurement%20of%20diagnostic%20x-ray%20spectrum%20using%20high-resolution%20Schottky%20CdTe%20detector&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Maeda,%20Koji&rft.date=2005-06&rft.volume=32&rft.issue=6&rft.spage=1542&rft.epage=1547&rft.pages=1542-1547&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1921647&rft_dat=%3Cwiley_osti_%3EMP1647%3C/wiley_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16013712&rfr_iscdi=true