Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector
The analysis of x-ray spectra is important for quality assurance (QA) and quality control (QC) of radiographic systems. The aim of this study is to measure the diagnostic x-ray spectra under clinical conditions using a high-resolution Schottky CdTe detector. Under clinical conditions, the direct mea...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2005-06, Vol.32 (6), p.1542-1547 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1547 |
---|---|
container_issue | 6 |
container_start_page | 1542 |
container_title | Medical physics (Lancaster) |
container_volume | 32 |
creator | Maeda, Koji Matsumoto, Masao Taniguchi, Akira |
description | The analysis of x-ray spectra is important for quality assurance (QA) and quality control (QC) of radiographic systems. The aim of this study is to measure the diagnostic x-ray spectra under clinical conditions using a high-resolution Schottky CdTe detector. Under clinical conditions, the direct measurement of a diagnostic spectrum is difficult because of the high photon fluence rates that cause significant detector photon pile-up. An alternative way of measuring the output spectra from a tube is first to measure the 90 deg Compton scattered photons from a given sample. With this set-up detector, pile-up is not a problem. From the scattered spectrum one can then use an energy correction and the Klein–Nishina function to reconstruct the actual spectrum incident upon the scattering sample. The verification of whether our spectra measured by the Compton method are accurate was accomplished by comparing exposure rates calculated from the reconstructed spectra to those measured with an ionization chamber. We used aluminum (Al) filtration ranging in thickness from 0 to 6 mm. The half value layers (HVLs) obtained for a 70 kV beam were 2.78 mm via the ionization chamber measurements and 2.93 mm via the spectral measurements. For a 100 kV beam we obtained 3.98 and 4.32 mm. The small differences in HVLs obtained by both techniques suggest that Compton scatter spectroscopy with a Schottky CdTe detector is suitable for measuring the diagnostic x-ray spectra and useful for QA and QC of clinical x-ray equipment. |
doi_str_mv | 10.1118/1.1921647 |
format | Article |
fullrecord | <record><control><sourceid>wiley_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20726054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP1647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4857-f8bd7eae65517f1a31c17200d027b112c60971662cfd45ccfce10134dfb8d3c83</originalsourceid><addsrcrecordid>eNp90F1r2zAYBWAxOpY020X_QBHsqgW17yvLlnM5QvcBHRs0uzaKPmK3sWUkeVv-_WwctsFYr3Tz6OjoEHKBcIOI5S3e4JpjIeQLsuRCZkxwWJ-RJcBaMC4gX5DzGB8BoMhyeEUWWABmEvmS1Bvf9sl3LGqVkg1Nt6etVXEItrVdot5R06h952NqNP3JgjrS2FudwtDSIU68bvY1Czb6w5Aa39EHXfuUno50Y7aWGptG7cNr8tKpQ7RvTueKfHt_t918ZPdfPnzavLtnWpS5ZK7cGWmVLfIcpUOVoUbJAQxwuUPkuoC1xKLg2hmRa-20xfEvwrhdaTJdZivyds6dGldRN-PztfZdN7aoOEheQC5GdTUrHXyMwbqqD02rwrFCqKZNK6xOm472crb9sGut-SNPI46AzeBHc7DH_ydVn7-eAq9nP7VT02a_73z34S_fG_cc_rfqL6aom_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Maeda, Koji ; Matsumoto, Masao ; Taniguchi, Akira</creator><creatorcontrib>Maeda, Koji ; Matsumoto, Masao ; Taniguchi, Akira</creatorcontrib><description>The analysis of x-ray spectra is important for quality assurance (QA) and quality control (QC) of radiographic systems. The aim of this study is to measure the diagnostic x-ray spectra under clinical conditions using a high-resolution Schottky CdTe detector. Under clinical conditions, the direct measurement of a diagnostic spectrum is difficult because of the high photon fluence rates that cause significant detector photon pile-up. An alternative way of measuring the output spectra from a tube is first to measure the 90 deg Compton scattered photons from a given sample. With this set-up detector, pile-up is not a problem. From the scattered spectrum one can then use an energy correction and the Klein–Nishina function to reconstruct the actual spectrum incident upon the scattering sample. The verification of whether our spectra measured by the Compton method are accurate was accomplished by comparing exposure rates calculated from the reconstructed spectra to those measured with an ionization chamber. We used aluminum (Al) filtration ranging in thickness from 0 to 6 mm. The half value layers (HVLs) obtained for a 70 kV beam were 2.78 mm via the ionization chamber measurements and 2.93 mm via the spectral measurements. For a 100 kV beam we obtained 3.98 and 4.32 mm. The small differences in HVLs obtained by both techniques suggest that Compton scatter spectroscopy with a Schottky CdTe detector is suitable for measuring the diagnostic x-ray spectra and useful for QA and QC of clinical x-ray equipment.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1921647</identifier><identifier>PMID: 16013712</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Aluminum - chemistry ; Aluminum - metabolism ; Carbon ; CDTE SEMICONDUCTOR DETECTORS ; COMPTON EFFECT ; compton scatter spectroscopy ; Compton scattering ; COMPUTERIZED SIMULATION ; diagnostic radiography ; diagnostic x‐ray spectrum ; high‐resolution Schottky CdTe detector ; Humans ; II‐VI semiconductors ; ionisation chambers ; IONIZATION CHAMBERS ; Ions ; Models, Statistical ; MONTE CARLO METHOD ; Monte Carlo methods ; Monte Carlo simulation ; Phantoms, Imaging ; Photon scattering ; PHOTONS ; QUALITY ASSURANCE ; QUALITY CONTROL ; Radiation Dosage ; RADIATION PROTECTION AND DOSIMETRY ; Radiographic Image Interpretation, Computer-Assisted - instrumentation ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiography ; Scattering, Radiation ; Schottky barriers ; SPECTROSCOPY ; STRIPPING ; stripping procedure ; X-RAY EQUIPMENT ; X-RAY SPECTRA ; X-Rays ; X‐ray and EXAFS ; X‐ray detectors ; X‐ray scattering</subject><ispartof>Medical physics (Lancaster), 2005-06, Vol.32 (6), p.1542-1547</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2005 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4857-f8bd7eae65517f1a31c17200d027b112c60971662cfd45ccfce10134dfb8d3c83</citedby><cites>FETCH-LOGICAL-c4857-f8bd7eae65517f1a31c17200d027b112c60971662cfd45ccfce10134dfb8d3c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1921647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1921647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16013712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20726054$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maeda, Koji</creatorcontrib><creatorcontrib>Matsumoto, Masao</creatorcontrib><creatorcontrib>Taniguchi, Akira</creatorcontrib><title>Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>The analysis of x-ray spectra is important for quality assurance (QA) and quality control (QC) of radiographic systems. The aim of this study is to measure the diagnostic x-ray spectra under clinical conditions using a high-resolution Schottky CdTe detector. Under clinical conditions, the direct measurement of a diagnostic spectrum is difficult because of the high photon fluence rates that cause significant detector photon pile-up. An alternative way of measuring the output spectra from a tube is first to measure the 90 deg Compton scattered photons from a given sample. With this set-up detector, pile-up is not a problem. From the scattered spectrum one can then use an energy correction and the Klein–Nishina function to reconstruct the actual spectrum incident upon the scattering sample. The verification of whether our spectra measured by the Compton method are accurate was accomplished by comparing exposure rates calculated from the reconstructed spectra to those measured with an ionization chamber. We used aluminum (Al) filtration ranging in thickness from 0 to 6 mm. The half value layers (HVLs) obtained for a 70 kV beam were 2.78 mm via the ionization chamber measurements and 2.93 mm via the spectral measurements. For a 100 kV beam we obtained 3.98 and 4.32 mm. The small differences in HVLs obtained by both techniques suggest that Compton scatter spectroscopy with a Schottky CdTe detector is suitable for measuring the diagnostic x-ray spectra and useful for QA and QC of clinical x-ray equipment.</description><subject>Aluminum - chemistry</subject><subject>Aluminum - metabolism</subject><subject>Carbon</subject><subject>CDTE SEMICONDUCTOR DETECTORS</subject><subject>COMPTON EFFECT</subject><subject>compton scatter spectroscopy</subject><subject>Compton scattering</subject><subject>COMPUTERIZED SIMULATION</subject><subject>diagnostic radiography</subject><subject>diagnostic x‐ray spectrum</subject><subject>high‐resolution Schottky CdTe detector</subject><subject>Humans</subject><subject>II‐VI semiconductors</subject><subject>ionisation chambers</subject><subject>IONIZATION CHAMBERS</subject><subject>Ions</subject><subject>Models, Statistical</subject><subject>MONTE CARLO METHOD</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Phantoms, Imaging</subject><subject>Photon scattering</subject><subject>PHOTONS</subject><subject>QUALITY ASSURANCE</subject><subject>QUALITY CONTROL</subject><subject>Radiation Dosage</subject><subject>RADIATION PROTECTION AND DOSIMETRY</subject><subject>Radiographic Image Interpretation, Computer-Assisted - instrumentation</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiography</subject><subject>Scattering, Radiation</subject><subject>Schottky barriers</subject><subject>SPECTROSCOPY</subject><subject>STRIPPING</subject><subject>stripping procedure</subject><subject>X-RAY EQUIPMENT</subject><subject>X-RAY SPECTRA</subject><subject>X-Rays</subject><subject>X‐ray and EXAFS</subject><subject>X‐ray detectors</subject><subject>X‐ray scattering</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90F1r2zAYBWAxOpY020X_QBHsqgW17yvLlnM5QvcBHRs0uzaKPmK3sWUkeVv-_WwctsFYr3Tz6OjoEHKBcIOI5S3e4JpjIeQLsuRCZkxwWJ-RJcBaMC4gX5DzGB8BoMhyeEUWWABmEvmS1Bvf9sl3LGqVkg1Nt6etVXEItrVdot5R06h952NqNP3JgjrS2FudwtDSIU68bvY1Czb6w5Aa39EHXfuUno50Y7aWGptG7cNr8tKpQ7RvTueKfHt_t918ZPdfPnzavLtnWpS5ZK7cGWmVLfIcpUOVoUbJAQxwuUPkuoC1xKLg2hmRa-20xfEvwrhdaTJdZivyds6dGldRN-PztfZdN7aoOEheQC5GdTUrHXyMwbqqD02rwrFCqKZNK6xOm472crb9sGut-SNPI46AzeBHc7DH_ydVn7-eAq9nP7VT02a_73z34S_fG_cc_rfqL6aom_w</recordid><startdate>200506</startdate><enddate>200506</enddate><creator>Maeda, Koji</creator><creator>Matsumoto, Masao</creator><creator>Taniguchi, Akira</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>200506</creationdate><title>Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector</title><author>Maeda, Koji ; Matsumoto, Masao ; Taniguchi, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4857-f8bd7eae65517f1a31c17200d027b112c60971662cfd45ccfce10134dfb8d3c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aluminum - chemistry</topic><topic>Aluminum - metabolism</topic><topic>Carbon</topic><topic>CDTE SEMICONDUCTOR DETECTORS</topic><topic>COMPTON EFFECT</topic><topic>compton scatter spectroscopy</topic><topic>Compton scattering</topic><topic>COMPUTERIZED SIMULATION</topic><topic>diagnostic radiography</topic><topic>diagnostic x‐ray spectrum</topic><topic>high‐resolution Schottky CdTe detector</topic><topic>Humans</topic><topic>II‐VI semiconductors</topic><topic>ionisation chambers</topic><topic>IONIZATION CHAMBERS</topic><topic>Ions</topic><topic>Models, Statistical</topic><topic>MONTE CARLO METHOD</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Phantoms, Imaging</topic><topic>Photon scattering</topic><topic>PHOTONS</topic><topic>QUALITY ASSURANCE</topic><topic>QUALITY CONTROL</topic><topic>Radiation Dosage</topic><topic>RADIATION PROTECTION AND DOSIMETRY</topic><topic>Radiographic Image Interpretation, Computer-Assisted - instrumentation</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiography</topic><topic>Scattering, Radiation</topic><topic>Schottky barriers</topic><topic>SPECTROSCOPY</topic><topic>STRIPPING</topic><topic>stripping procedure</topic><topic>X-RAY EQUIPMENT</topic><topic>X-RAY SPECTRA</topic><topic>X-Rays</topic><topic>X‐ray and EXAFS</topic><topic>X‐ray detectors</topic><topic>X‐ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maeda, Koji</creatorcontrib><creatorcontrib>Matsumoto, Masao</creatorcontrib><creatorcontrib>Taniguchi, Akira</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maeda, Koji</au><au>Matsumoto, Masao</au><au>Taniguchi, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2005-06</date><risdate>2005</risdate><volume>32</volume><issue>6</issue><spage>1542</spage><epage>1547</epage><pages>1542-1547</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>The analysis of x-ray spectra is important for quality assurance (QA) and quality control (QC) of radiographic systems. The aim of this study is to measure the diagnostic x-ray spectra under clinical conditions using a high-resolution Schottky CdTe detector. Under clinical conditions, the direct measurement of a diagnostic spectrum is difficult because of the high photon fluence rates that cause significant detector photon pile-up. An alternative way of measuring the output spectra from a tube is first to measure the 90 deg Compton scattered photons from a given sample. With this set-up detector, pile-up is not a problem. From the scattered spectrum one can then use an energy correction and the Klein–Nishina function to reconstruct the actual spectrum incident upon the scattering sample. The verification of whether our spectra measured by the Compton method are accurate was accomplished by comparing exposure rates calculated from the reconstructed spectra to those measured with an ionization chamber. We used aluminum (Al) filtration ranging in thickness from 0 to 6 mm. The half value layers (HVLs) obtained for a 70 kV beam were 2.78 mm via the ionization chamber measurements and 2.93 mm via the spectral measurements. For a 100 kV beam we obtained 3.98 and 4.32 mm. The small differences in HVLs obtained by both techniques suggest that Compton scatter spectroscopy with a Schottky CdTe detector is suitable for measuring the diagnostic x-ray spectra and useful for QA and QC of clinical x-ray equipment.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>16013712</pmid><doi>10.1118/1.1921647</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2005-06, Vol.32 (6), p.1542-1547 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_osti_scitechconnect_20726054 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Aluminum - chemistry Aluminum - metabolism Carbon CDTE SEMICONDUCTOR DETECTORS COMPTON EFFECT compton scatter spectroscopy Compton scattering COMPUTERIZED SIMULATION diagnostic radiography diagnostic x‐ray spectrum high‐resolution Schottky CdTe detector Humans II‐VI semiconductors ionisation chambers IONIZATION CHAMBERS Ions Models, Statistical MONTE CARLO METHOD Monte Carlo methods Monte Carlo simulation Phantoms, Imaging Photon scattering PHOTONS QUALITY ASSURANCE QUALITY CONTROL Radiation Dosage RADIATION PROTECTION AND DOSIMETRY Radiographic Image Interpretation, Computer-Assisted - instrumentation Radiographic Image Interpretation, Computer-Assisted - methods Radiography Scattering, Radiation Schottky barriers SPECTROSCOPY STRIPPING stripping procedure X-RAY EQUIPMENT X-RAY SPECTRA X-Rays X‐ray and EXAFS X‐ray detectors X‐ray scattering |
title | Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compton-scattering%20measurement%20of%20diagnostic%20x-ray%20spectrum%20using%20high-resolution%20Schottky%20CdTe%20detector&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Maeda,%20Koji&rft.date=2005-06&rft.volume=32&rft.issue=6&rft.spage=1542&rft.epage=1547&rft.pages=1542-1547&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1921647&rft_dat=%3Cwiley_osti_%3EMP1647%3C/wiley_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16013712&rfr_iscdi=true |