Dissociative recombination and low-energy inelastic electron collisions of the helium dimer ion

The dissociative recombination (DR) of {sup 3}He {sup 4}He{sup +} has been investigated at the heavy-ion Test Storage Ring (TSR) in Heidelberg by observing neutral products from electron-ion collisions in a merged beams configuration at relative energies from near-zero (thermal electron energy about...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2005-07, Vol.72 (1), Article 012712
Hauptverfasser: Pedersen, H. B., Buhr, H., Altevogt, S., Andrianarijaona, V., Kreckel, H., Lammich, L., de Ruette, N., Staicu-Casagrande, E. M., Schwalm, D., Strasser, D., Urbain, X., Zajfman, D., Wolf, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physical review. A, Atomic, molecular, and optical physics
container_volume 72
creator Pedersen, H. B.
Buhr, H.
Altevogt, S.
Andrianarijaona, V.
Kreckel, H.
Lammich, L.
de Ruette, N.
Staicu-Casagrande, E. M.
Schwalm, D.
Strasser, D.
Urbain, X.
Zajfman, D.
Wolf, A.
description The dissociative recombination (DR) of {sup 3}He {sup 4}He{sup +} has been investigated at the heavy-ion Test Storage Ring (TSR) in Heidelberg by observing neutral products from electron-ion collisions in a merged beams configuration at relative energies from near-zero (thermal electron energy about 10 meV) up to 40 eV. After storage and electron cooling for 35 s, an effective DR rate coefficient at near-zero energy of 3x10{sup -9} cm{sup 3}s{sup -1} is found. The temporal evolution of the neutral product rates and fragment imaging spectra reveals that the populations of vibrational levels in the stored ion beam are nonthermal with fractions of {approx}0.1-1 % in excited levels up to at least v=4, having a significant effect on the observed DR signals. With a pump-probe-type technique using DR fragment imaging while switching the properties of the electron beam, the vibrational excitation of the ions is found to originate mostly from ion collisions with the residual gas. Also, the temporal evolution of the DR signals suggests that a strong electron induced rotational cooling occurs in the vibrational ground state, reaching a rotational temperature near or below 300 K. From the absolute rate coefficient and the shape of the fragment imaging spectrum observed under stationary conditions, the DR rate coefficient from the vibrational ground state is determined; converted to a thermal electron gas at 300 K it amounts to (3.3{+-}0.9)x10{sup -10} cm{sup 3}s{sup -1}. The corresponding branching ratios from v=0 to the atomic final states are found to be (3.7{+-}1.2) % for 1s2s {sup 3}S,(37.4{+-}4.0) % for 1s2s {sup 1}S,(58.6{+-}5.2) % for 1s2p {sup 3}P, and (2.9{+-}3.0) % for 1s2p {sup 1}P. A DR rate coefficient in the range of 2x10{sup -7} cm{sup 3}s{sup -1} or above is inferred for vibrational levels v=3 and higher. As a function of the collision energy, the measured DR rate coefficient displays a structure around 0.2 eV. At higher energies, it has one smooth peak around 7.3 eV and a highly structured appearance at 15-40 eV. The small size of the observed effective DR rate coefficient at near-zero energy indicates that the electron induced rotational cooling is due to inelastic electron-ion collisions and not due to selective depletion of rotational levels by DR.
doi_str_mv 10.1103/PhysRevA.72.012712
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20718370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_72_012712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-13c3f54016cecec99e5e43247890cb5ef55877278163241b33f3f9e8daf1654b3</originalsourceid><addsrcrecordid>eNo1kE1LAzEQhoMoWKt_wFPA89Z8bjbHUrUKBUX0HHbTiRvJbiRZK_33plRnDvP1MLy8CF1TsqCU8NuXfp9fYbdcKLYglCnKTtCMEi0qWjN2euglqZgW6hxd5PxJSohGz5C58zlH69vJ7wAnsHHo_FimOOJ23OIQfyoYIX3ssR8htHnyFkMAO6VC2BiCz4XNODo89YB7CP57wFs_QMLlcInOXBsyXP3VOXp_uH9bPVab5_XTarmpLFNyqii33ElBaG2hpNYgQXAmVKOJ7SQ4KRulmGpoXba049xxp6HZto7WUnR8jm6Of2NRaLL1E9jexnEsSg0jijZckUKxI2VTzDmBM1_JD23aG0rMwUjzb6RRzByN5L_rcmk8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dissociative recombination and low-energy inelastic electron collisions of the helium dimer ion</title><source>American Physical Society Journals</source><creator>Pedersen, H. B. ; Buhr, H. ; Altevogt, S. ; Andrianarijaona, V. ; Kreckel, H. ; Lammich, L. ; de Ruette, N. ; Staicu-Casagrande, E. M. ; Schwalm, D. ; Strasser, D. ; Urbain, X. ; Zajfman, D. ; Wolf, A.</creator><creatorcontrib>Pedersen, H. B. ; Buhr, H. ; Altevogt, S. ; Andrianarijaona, V. ; Kreckel, H. ; Lammich, L. ; de Ruette, N. ; Staicu-Casagrande, E. M. ; Schwalm, D. ; Strasser, D. ; Urbain, X. ; Zajfman, D. ; Wolf, A.</creatorcontrib><description>The dissociative recombination (DR) of {sup 3}He {sup 4}He{sup +} has been investigated at the heavy-ion Test Storage Ring (TSR) in Heidelberg by observing neutral products from electron-ion collisions in a merged beams configuration at relative energies from near-zero (thermal electron energy about 10 meV) up to 40 eV. After storage and electron cooling for 35 s, an effective DR rate coefficient at near-zero energy of 3x10{sup -9} cm{sup 3}s{sup -1} is found. The temporal evolution of the neutral product rates and fragment imaging spectra reveals that the populations of vibrational levels in the stored ion beam are nonthermal with fractions of {approx}0.1-1 % in excited levels up to at least v=4, having a significant effect on the observed DR signals. With a pump-probe-type technique using DR fragment imaging while switching the properties of the electron beam, the vibrational excitation of the ions is found to originate mostly from ion collisions with the residual gas. Also, the temporal evolution of the DR signals suggests that a strong electron induced rotational cooling occurs in the vibrational ground state, reaching a rotational temperature near or below 300 K. From the absolute rate coefficient and the shape of the fragment imaging spectrum observed under stationary conditions, the DR rate coefficient from the vibrational ground state is determined; converted to a thermal electron gas at 300 K it amounts to (3.3{+-}0.9)x10{sup -10} cm{sup 3}s{sup -1}. The corresponding branching ratios from v=0 to the atomic final states are found to be (3.7{+-}1.2) % for 1s2s {sup 3}S,(37.4{+-}4.0) % for 1s2s {sup 1}S,(58.6{+-}5.2) % for 1s2p {sup 3}P, and (2.9{+-}3.0) % for 1s2p {sup 1}P. A DR rate coefficient in the range of 2x10{sup -7} cm{sup 3}s{sup -1} or above is inferred for vibrational levels v=3 and higher. As a function of the collision energy, the measured DR rate coefficient displays a structure around 0.2 eV. At higher energies, it has one smooth peak around 7.3 eV and a highly structured appearance at 15-40 eV. The small size of the observed effective DR rate coefficient at near-zero energy indicates that the electron induced rotational cooling is due to inelastic electron-ion collisions and not due to selective depletion of rotational levels by DR.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.72.012712</identifier><language>eng</language><publisher>United States</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; BRANCHING RATIO ; DIMERS ; DISSOCIATION ; ELECTRON BEAMS ; ELECTRON COOLING ; ELECTRON GAS ; ELECTRON-ION COLLISIONS ; ELECTRONS ; EV RANGE ; EXCITATION ; GROUND STATES ; HELIUM 3 ; HELIUM IONS ; IONIZATION ; RECOMBINATION ; ROTATIONAL STATES ; VIBRATIONAL STATES</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2005-07, Vol.72 (1), Article 012712</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-13c3f54016cecec99e5e43247890cb5ef55877278163241b33f3f9e8daf1654b3</citedby><cites>FETCH-LOGICAL-c275t-13c3f54016cecec99e5e43247890cb5ef55877278163241b33f3f9e8daf1654b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20718370$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedersen, H. B.</creatorcontrib><creatorcontrib>Buhr, H.</creatorcontrib><creatorcontrib>Altevogt, S.</creatorcontrib><creatorcontrib>Andrianarijaona, V.</creatorcontrib><creatorcontrib>Kreckel, H.</creatorcontrib><creatorcontrib>Lammich, L.</creatorcontrib><creatorcontrib>de Ruette, N.</creatorcontrib><creatorcontrib>Staicu-Casagrande, E. M.</creatorcontrib><creatorcontrib>Schwalm, D.</creatorcontrib><creatorcontrib>Strasser, D.</creatorcontrib><creatorcontrib>Urbain, X.</creatorcontrib><creatorcontrib>Zajfman, D.</creatorcontrib><creatorcontrib>Wolf, A.</creatorcontrib><title>Dissociative recombination and low-energy inelastic electron collisions of the helium dimer ion</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>The dissociative recombination (DR) of {sup 3}He {sup 4}He{sup +} has been investigated at the heavy-ion Test Storage Ring (TSR) in Heidelberg by observing neutral products from electron-ion collisions in a merged beams configuration at relative energies from near-zero (thermal electron energy about 10 meV) up to 40 eV. After storage and electron cooling for 35 s, an effective DR rate coefficient at near-zero energy of 3x10{sup -9} cm{sup 3}s{sup -1} is found. The temporal evolution of the neutral product rates and fragment imaging spectra reveals that the populations of vibrational levels in the stored ion beam are nonthermal with fractions of {approx}0.1-1 % in excited levels up to at least v=4, having a significant effect on the observed DR signals. With a pump-probe-type technique using DR fragment imaging while switching the properties of the electron beam, the vibrational excitation of the ions is found to originate mostly from ion collisions with the residual gas. Also, the temporal evolution of the DR signals suggests that a strong electron induced rotational cooling occurs in the vibrational ground state, reaching a rotational temperature near or below 300 K. From the absolute rate coefficient and the shape of the fragment imaging spectrum observed under stationary conditions, the DR rate coefficient from the vibrational ground state is determined; converted to a thermal electron gas at 300 K it amounts to (3.3{+-}0.9)x10{sup -10} cm{sup 3}s{sup -1}. The corresponding branching ratios from v=0 to the atomic final states are found to be (3.7{+-}1.2) % for 1s2s {sup 3}S,(37.4{+-}4.0) % for 1s2s {sup 1}S,(58.6{+-}5.2) % for 1s2p {sup 3}P, and (2.9{+-}3.0) % for 1s2p {sup 1}P. A DR rate coefficient in the range of 2x10{sup -7} cm{sup 3}s{sup -1} or above is inferred for vibrational levels v=3 and higher. As a function of the collision energy, the measured DR rate coefficient displays a structure around 0.2 eV. At higher energies, it has one smooth peak around 7.3 eV and a highly structured appearance at 15-40 eV. The small size of the observed effective DR rate coefficient at near-zero energy indicates that the electron induced rotational cooling is due to inelastic electron-ion collisions and not due to selective depletion of rotational levels by DR.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>BRANCHING RATIO</subject><subject>DIMERS</subject><subject>DISSOCIATION</subject><subject>ELECTRON BEAMS</subject><subject>ELECTRON COOLING</subject><subject>ELECTRON GAS</subject><subject>ELECTRON-ION COLLISIONS</subject><subject>ELECTRONS</subject><subject>EV RANGE</subject><subject>EXCITATION</subject><subject>GROUND STATES</subject><subject>HELIUM 3</subject><subject>HELIUM IONS</subject><subject>IONIZATION</subject><subject>RECOMBINATION</subject><subject>ROTATIONAL STATES</subject><subject>VIBRATIONAL STATES</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEQhoMoWKt_wFPA89Z8bjbHUrUKBUX0HHbTiRvJbiRZK_33plRnDvP1MLy8CF1TsqCU8NuXfp9fYbdcKLYglCnKTtCMEi0qWjN2euglqZgW6hxd5PxJSohGz5C58zlH69vJ7wAnsHHo_FimOOJ23OIQfyoYIX3ssR8htHnyFkMAO6VC2BiCz4XNODo89YB7CP57wFs_QMLlcInOXBsyXP3VOXp_uH9bPVab5_XTarmpLFNyqii33ElBaG2hpNYgQXAmVKOJ7SQ4KRulmGpoXba049xxp6HZto7WUnR8jm6Of2NRaLL1E9jexnEsSg0jijZckUKxI2VTzDmBM1_JD23aG0rMwUjzb6RRzByN5L_rcmk8</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Pedersen, H. B.</creator><creator>Buhr, H.</creator><creator>Altevogt, S.</creator><creator>Andrianarijaona, V.</creator><creator>Kreckel, H.</creator><creator>Lammich, L.</creator><creator>de Ruette, N.</creator><creator>Staicu-Casagrande, E. M.</creator><creator>Schwalm, D.</creator><creator>Strasser, D.</creator><creator>Urbain, X.</creator><creator>Zajfman, D.</creator><creator>Wolf, A.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20050701</creationdate><title>Dissociative recombination and low-energy inelastic electron collisions of the helium dimer ion</title><author>Pedersen, H. B. ; Buhr, H. ; Altevogt, S. ; Andrianarijaona, V. ; Kreckel, H. ; Lammich, L. ; de Ruette, N. ; Staicu-Casagrande, E. M. ; Schwalm, D. ; Strasser, D. ; Urbain, X. ; Zajfman, D. ; Wolf, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-13c3f54016cecec99e5e43247890cb5ef55877278163241b33f3f9e8daf1654b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>BRANCHING RATIO</topic><topic>DIMERS</topic><topic>DISSOCIATION</topic><topic>ELECTRON BEAMS</topic><topic>ELECTRON COOLING</topic><topic>ELECTRON GAS</topic><topic>ELECTRON-ION COLLISIONS</topic><topic>ELECTRONS</topic><topic>EV RANGE</topic><topic>EXCITATION</topic><topic>GROUND STATES</topic><topic>HELIUM 3</topic><topic>HELIUM IONS</topic><topic>IONIZATION</topic><topic>RECOMBINATION</topic><topic>ROTATIONAL STATES</topic><topic>VIBRATIONAL STATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedersen, H. B.</creatorcontrib><creatorcontrib>Buhr, H.</creatorcontrib><creatorcontrib>Altevogt, S.</creatorcontrib><creatorcontrib>Andrianarijaona, V.</creatorcontrib><creatorcontrib>Kreckel, H.</creatorcontrib><creatorcontrib>Lammich, L.</creatorcontrib><creatorcontrib>de Ruette, N.</creatorcontrib><creatorcontrib>Staicu-Casagrande, E. M.</creatorcontrib><creatorcontrib>Schwalm, D.</creatorcontrib><creatorcontrib>Strasser, D.</creatorcontrib><creatorcontrib>Urbain, X.</creatorcontrib><creatorcontrib>Zajfman, D.</creatorcontrib><creatorcontrib>Wolf, A.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedersen, H. B.</au><au>Buhr, H.</au><au>Altevogt, S.</au><au>Andrianarijaona, V.</au><au>Kreckel, H.</au><au>Lammich, L.</au><au>de Ruette, N.</au><au>Staicu-Casagrande, E. M.</au><au>Schwalm, D.</au><au>Strasser, D.</au><au>Urbain, X.</au><au>Zajfman, D.</au><au>Wolf, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissociative recombination and low-energy inelastic electron collisions of the helium dimer ion</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>72</volume><issue>1</issue><artnum>012712</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>The dissociative recombination (DR) of {sup 3}He {sup 4}He{sup +} has been investigated at the heavy-ion Test Storage Ring (TSR) in Heidelberg by observing neutral products from electron-ion collisions in a merged beams configuration at relative energies from near-zero (thermal electron energy about 10 meV) up to 40 eV. After storage and electron cooling for 35 s, an effective DR rate coefficient at near-zero energy of 3x10{sup -9} cm{sup 3}s{sup -1} is found. The temporal evolution of the neutral product rates and fragment imaging spectra reveals that the populations of vibrational levels in the stored ion beam are nonthermal with fractions of {approx}0.1-1 % in excited levels up to at least v=4, having a significant effect on the observed DR signals. With a pump-probe-type technique using DR fragment imaging while switching the properties of the electron beam, the vibrational excitation of the ions is found to originate mostly from ion collisions with the residual gas. Also, the temporal evolution of the DR signals suggests that a strong electron induced rotational cooling occurs in the vibrational ground state, reaching a rotational temperature near or below 300 K. From the absolute rate coefficient and the shape of the fragment imaging spectrum observed under stationary conditions, the DR rate coefficient from the vibrational ground state is determined; converted to a thermal electron gas at 300 K it amounts to (3.3{+-}0.9)x10{sup -10} cm{sup 3}s{sup -1}. The corresponding branching ratios from v=0 to the atomic final states are found to be (3.7{+-}1.2) % for 1s2s {sup 3}S,(37.4{+-}4.0) % for 1s2s {sup 1}S,(58.6{+-}5.2) % for 1s2p {sup 3}P, and (2.9{+-}3.0) % for 1s2p {sup 1}P. A DR rate coefficient in the range of 2x10{sup -7} cm{sup 3}s{sup -1} or above is inferred for vibrational levels v=3 and higher. As a function of the collision energy, the measured DR rate coefficient displays a structure around 0.2 eV. At higher energies, it has one smooth peak around 7.3 eV and a highly structured appearance at 15-40 eV. The small size of the observed effective DR rate coefficient at near-zero energy indicates that the electron induced rotational cooling is due to inelastic electron-ion collisions and not due to selective depletion of rotational levels by DR.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.72.012712</doi></addata></record>
fulltext fulltext
identifier ISSN: 1050-2947
ispartof Physical review. A, Atomic, molecular, and optical physics, 2005-07, Vol.72 (1), Article 012712
issn 1050-2947
1094-1622
language eng
recordid cdi_osti_scitechconnect_20718370
source American Physical Society Journals
subjects ATOMIC AND MOLECULAR PHYSICS
BRANCHING RATIO
DIMERS
DISSOCIATION
ELECTRON BEAMS
ELECTRON COOLING
ELECTRON GAS
ELECTRON-ION COLLISIONS
ELECTRONS
EV RANGE
EXCITATION
GROUND STATES
HELIUM 3
HELIUM IONS
IONIZATION
RECOMBINATION
ROTATIONAL STATES
VIBRATIONAL STATES
title Dissociative recombination and low-energy inelastic electron collisions of the helium dimer ion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissociative%20recombination%20and%20low-energy%20inelastic%20electron%20collisions%20of%20the%20helium%20dimer%20ion&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Pedersen,%20H.%20B.&rft.date=2005-07-01&rft.volume=72&rft.issue=1&rft.artnum=012712&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.72.012712&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_72_012712%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true