Entangling power of permutations
The notion of entangling power of unitary matrices was introduced by Zanardi et al., [Phys. Rev. A 62, 030301 (2000)]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries...
Gespeichert in:
Veröffentlicht in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2005-07, Vol.72 (1), Article 012314 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physical review. A, Atomic, molecular, and optical physics |
container_volume | 72 |
creator | Clarisse, Lieven Ghosh, Sibasish Severini, Simone Sudbery, Anthony |
description | The notion of entangling power of unitary matrices was introduced by Zanardi et al., [Phys. Rev. A 62, 030301 (2000)]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries, the identity and the swap. We construct the permutations with the minimum nonzero entangling power for every dimension. With the use of orthogonal latin squares, we construct the permutations with the maximum entangling power for every dimension. Moreover, we show that the value obtained is maximum over all unitaries of the same dimension, with a possible exception for 36. Our result enables us to construct generic examples of 4-qudit maximally entangled states for all dimensions except for 2 and 6. We numerically classify, according to their entangling power, the permutation matrices of dimensions 4 and 9, and we give some estimates for higher dimensions. |
doi_str_mv | 10.1103/PhysRevA.72.012314 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20718322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_72_012314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-cc55a7e8c6d737cb012b8af2c60181bd0c68a5e48c5370a2c447cbe0ef59a68a3</originalsourceid><addsrcrecordid>eNo1kE1LAzEQhoMoWKt_wNOC512TSbLJHkupH1BQRM8hO822K22yJFHpv3fL6lxmYB5eXh5CbhmtGKP8_nV3TG_ue1EpqCgDzsQZmTHaiJLVAOenW9ISGqEuyVVKn3QcoZsZKVY-W7_d935bDOHHxSJ0xeDi4Svb3AefrslFZ_fJ3fztOfl4WL0vn8r1y-PzcrEuEZTMJaKUVjmN9UZxhe1YotW2A6wp06zdUKy1lU5olFxRCyjESDnqOtnY8cXn5G7KDSn3JmGfHe4weO8wG6CKaQ4wUjBRGENK0XVmiP3BxqNh1JxMmH8TRoGZTPBfy3lSVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Entangling power of permutations</title><source>American Physical Society Journals</source><creator>Clarisse, Lieven ; Ghosh, Sibasish ; Severini, Simone ; Sudbery, Anthony</creator><creatorcontrib>Clarisse, Lieven ; Ghosh, Sibasish ; Severini, Simone ; Sudbery, Anthony</creatorcontrib><description>The notion of entangling power of unitary matrices was introduced by Zanardi et al., [Phys. Rev. A 62, 030301 (2000)]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries, the identity and the swap. We construct the permutations with the minimum nonzero entangling power for every dimension. With the use of orthogonal latin squares, we construct the permutations with the maximum entangling power for every dimension. Moreover, we show that the value obtained is maximum over all unitaries of the same dimension, with a possible exception for 36. Our result enables us to construct generic examples of 4-qudit maximally entangled states for all dimensions except for 2 and 6. We numerically classify, according to their entangling power, the permutation matrices of dimensions 4 and 9, and we give some estimates for higher dimensions.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.72.012314</identifier><language>eng</language><publisher>United States</publisher><subject>ALGEBRA ; ATOMIC AND MOLECULAR PHYSICS ; ENERGY LEVELS ; MATRICES ; QUANTUM ENTANGLEMENT ; QUANTUM MECHANICS ; UNITARITY</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2005-07, Vol.72 (1), Article 012314</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-cc55a7e8c6d737cb012b8af2c60181bd0c68a5e48c5370a2c447cbe0ef59a68a3</citedby><cites>FETCH-LOGICAL-c275t-cc55a7e8c6d737cb012b8af2c60181bd0c68a5e48c5370a2c447cbe0ef59a68a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20718322$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Clarisse, Lieven</creatorcontrib><creatorcontrib>Ghosh, Sibasish</creatorcontrib><creatorcontrib>Severini, Simone</creatorcontrib><creatorcontrib>Sudbery, Anthony</creatorcontrib><title>Entangling power of permutations</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>The notion of entangling power of unitary matrices was introduced by Zanardi et al., [Phys. Rev. A 62, 030301 (2000)]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries, the identity and the swap. We construct the permutations with the minimum nonzero entangling power for every dimension. With the use of orthogonal latin squares, we construct the permutations with the maximum entangling power for every dimension. Moreover, we show that the value obtained is maximum over all unitaries of the same dimension, with a possible exception for 36. Our result enables us to construct generic examples of 4-qudit maximally entangled states for all dimensions except for 2 and 6. We numerically classify, according to their entangling power, the permutation matrices of dimensions 4 and 9, and we give some estimates for higher dimensions.</description><subject>ALGEBRA</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>ENERGY LEVELS</subject><subject>MATRICES</subject><subject>QUANTUM ENTANGLEMENT</subject><subject>QUANTUM MECHANICS</subject><subject>UNITARITY</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEQhoMoWKt_wNOC512TSbLJHkupH1BQRM8hO822K22yJFHpv3fL6lxmYB5eXh5CbhmtGKP8_nV3TG_ue1EpqCgDzsQZmTHaiJLVAOenW9ISGqEuyVVKn3QcoZsZKVY-W7_d935bDOHHxSJ0xeDi4Svb3AefrslFZ_fJ3fztOfl4WL0vn8r1y-PzcrEuEZTMJaKUVjmN9UZxhe1YotW2A6wp06zdUKy1lU5olFxRCyjESDnqOtnY8cXn5G7KDSn3JmGfHe4weO8wG6CKaQ4wUjBRGENK0XVmiP3BxqNh1JxMmH8TRoGZTPBfy3lSVA</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Clarisse, Lieven</creator><creator>Ghosh, Sibasish</creator><creator>Severini, Simone</creator><creator>Sudbery, Anthony</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20050701</creationdate><title>Entangling power of permutations</title><author>Clarisse, Lieven ; Ghosh, Sibasish ; Severini, Simone ; Sudbery, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-cc55a7e8c6d737cb012b8af2c60181bd0c68a5e48c5370a2c447cbe0ef59a68a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ALGEBRA</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>ENERGY LEVELS</topic><topic>MATRICES</topic><topic>QUANTUM ENTANGLEMENT</topic><topic>QUANTUM MECHANICS</topic><topic>UNITARITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clarisse, Lieven</creatorcontrib><creatorcontrib>Ghosh, Sibasish</creatorcontrib><creatorcontrib>Severini, Simone</creatorcontrib><creatorcontrib>Sudbery, Anthony</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clarisse, Lieven</au><au>Ghosh, Sibasish</au><au>Severini, Simone</au><au>Sudbery, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entangling power of permutations</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>72</volume><issue>1</issue><artnum>012314</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>The notion of entangling power of unitary matrices was introduced by Zanardi et al., [Phys. Rev. A 62, 030301 (2000)]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries, the identity and the swap. We construct the permutations with the minimum nonzero entangling power for every dimension. With the use of orthogonal latin squares, we construct the permutations with the maximum entangling power for every dimension. Moreover, we show that the value obtained is maximum over all unitaries of the same dimension, with a possible exception for 36. Our result enables us to construct generic examples of 4-qudit maximally entangled states for all dimensions except for 2 and 6. We numerically classify, according to their entangling power, the permutation matrices of dimensions 4 and 9, and we give some estimates for higher dimensions.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.72.012314</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-2947 |
ispartof | Physical review. A, Atomic, molecular, and optical physics, 2005-07, Vol.72 (1), Article 012314 |
issn | 1050-2947 1094-1622 |
language | eng |
recordid | cdi_osti_scitechconnect_20718322 |
source | American Physical Society Journals |
subjects | ALGEBRA ATOMIC AND MOLECULAR PHYSICS ENERGY LEVELS MATRICES QUANTUM ENTANGLEMENT QUANTUM MECHANICS UNITARITY |
title | Entangling power of permutations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entangling%20power%20of%20permutations&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Clarisse,%20Lieven&rft.date=2005-07-01&rft.volume=72&rft.issue=1&rft.artnum=012314&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.72.012314&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_72_012314%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |