Entangling power of permutations

The notion of entangling power of unitary matrices was introduced by Zanardi et al., [Phys. Rev. A 62, 030301 (2000)]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2005-07, Vol.72 (1), Article 012314
Hauptverfasser: Clarisse, Lieven, Ghosh, Sibasish, Severini, Simone, Sudbery, Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physical review. A, Atomic, molecular, and optical physics
container_volume 72
creator Clarisse, Lieven
Ghosh, Sibasish
Severini, Simone
Sudbery, Anthony
description The notion of entangling power of unitary matrices was introduced by Zanardi et al., [Phys. Rev. A 62, 030301 (2000)]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries, the identity and the swap. We construct the permutations with the minimum nonzero entangling power for every dimension. With the use of orthogonal latin squares, we construct the permutations with the maximum entangling power for every dimension. Moreover, we show that the value obtained is maximum over all unitaries of the same dimension, with a possible exception for 36. Our result enables us to construct generic examples of 4-qudit maximally entangled states for all dimensions except for 2 and 6. We numerically classify, according to their entangling power, the permutation matrices of dimensions 4 and 9, and we give some estimates for higher dimensions.
doi_str_mv 10.1103/PhysRevA.72.012314
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20718322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_72_012314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-cc55a7e8c6d737cb012b8af2c60181bd0c68a5e48c5370a2c447cbe0ef59a68a3</originalsourceid><addsrcrecordid>eNo1kE1LAzEQhoMoWKt_wNOC512TSbLJHkupH1BQRM8hO822K22yJFHpv3fL6lxmYB5eXh5CbhmtGKP8_nV3TG_ue1EpqCgDzsQZmTHaiJLVAOenW9ISGqEuyVVKn3QcoZsZKVY-W7_d935bDOHHxSJ0xeDi4Svb3AefrslFZ_fJ3fztOfl4WL0vn8r1y-PzcrEuEZTMJaKUVjmN9UZxhe1YotW2A6wp06zdUKy1lU5olFxRCyjESDnqOtnY8cXn5G7KDSn3JmGfHe4weO8wG6CKaQ4wUjBRGENK0XVmiP3BxqNh1JxMmH8TRoGZTPBfy3lSVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Entangling power of permutations</title><source>American Physical Society Journals</source><creator>Clarisse, Lieven ; Ghosh, Sibasish ; Severini, Simone ; Sudbery, Anthony</creator><creatorcontrib>Clarisse, Lieven ; Ghosh, Sibasish ; Severini, Simone ; Sudbery, Anthony</creatorcontrib><description>The notion of entangling power of unitary matrices was introduced by Zanardi et al., [Phys. Rev. A 62, 030301 (2000)]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries, the identity and the swap. We construct the permutations with the minimum nonzero entangling power for every dimension. With the use of orthogonal latin squares, we construct the permutations with the maximum entangling power for every dimension. Moreover, we show that the value obtained is maximum over all unitaries of the same dimension, with a possible exception for 36. Our result enables us to construct generic examples of 4-qudit maximally entangled states for all dimensions except for 2 and 6. We numerically classify, according to their entangling power, the permutation matrices of dimensions 4 and 9, and we give some estimates for higher dimensions.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.72.012314</identifier><language>eng</language><publisher>United States</publisher><subject>ALGEBRA ; ATOMIC AND MOLECULAR PHYSICS ; ENERGY LEVELS ; MATRICES ; QUANTUM ENTANGLEMENT ; QUANTUM MECHANICS ; UNITARITY</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2005-07, Vol.72 (1), Article 012314</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-cc55a7e8c6d737cb012b8af2c60181bd0c68a5e48c5370a2c447cbe0ef59a68a3</citedby><cites>FETCH-LOGICAL-c275t-cc55a7e8c6d737cb012b8af2c60181bd0c68a5e48c5370a2c447cbe0ef59a68a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20718322$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Clarisse, Lieven</creatorcontrib><creatorcontrib>Ghosh, Sibasish</creatorcontrib><creatorcontrib>Severini, Simone</creatorcontrib><creatorcontrib>Sudbery, Anthony</creatorcontrib><title>Entangling power of permutations</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>The notion of entangling power of unitary matrices was introduced by Zanardi et al., [Phys. Rev. A 62, 030301 (2000)]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries, the identity and the swap. We construct the permutations with the minimum nonzero entangling power for every dimension. With the use of orthogonal latin squares, we construct the permutations with the maximum entangling power for every dimension. Moreover, we show that the value obtained is maximum over all unitaries of the same dimension, with a possible exception for 36. Our result enables us to construct generic examples of 4-qudit maximally entangled states for all dimensions except for 2 and 6. We numerically classify, according to their entangling power, the permutation matrices of dimensions 4 and 9, and we give some estimates for higher dimensions.</description><subject>ALGEBRA</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>ENERGY LEVELS</subject><subject>MATRICES</subject><subject>QUANTUM ENTANGLEMENT</subject><subject>QUANTUM MECHANICS</subject><subject>UNITARITY</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEQhoMoWKt_wNOC512TSbLJHkupH1BQRM8hO822K22yJFHpv3fL6lxmYB5eXh5CbhmtGKP8_nV3TG_ue1EpqCgDzsQZmTHaiJLVAOenW9ISGqEuyVVKn3QcoZsZKVY-W7_d935bDOHHxSJ0xeDi4Svb3AefrslFZ_fJ3fztOfl4WL0vn8r1y-PzcrEuEZTMJaKUVjmN9UZxhe1YotW2A6wp06zdUKy1lU5olFxRCyjESDnqOtnY8cXn5G7KDSn3JmGfHe4weO8wG6CKaQ4wUjBRGENK0XVmiP3BxqNh1JxMmH8TRoGZTPBfy3lSVA</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Clarisse, Lieven</creator><creator>Ghosh, Sibasish</creator><creator>Severini, Simone</creator><creator>Sudbery, Anthony</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20050701</creationdate><title>Entangling power of permutations</title><author>Clarisse, Lieven ; Ghosh, Sibasish ; Severini, Simone ; Sudbery, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-cc55a7e8c6d737cb012b8af2c60181bd0c68a5e48c5370a2c447cbe0ef59a68a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ALGEBRA</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>ENERGY LEVELS</topic><topic>MATRICES</topic><topic>QUANTUM ENTANGLEMENT</topic><topic>QUANTUM MECHANICS</topic><topic>UNITARITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clarisse, Lieven</creatorcontrib><creatorcontrib>Ghosh, Sibasish</creatorcontrib><creatorcontrib>Severini, Simone</creatorcontrib><creatorcontrib>Sudbery, Anthony</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clarisse, Lieven</au><au>Ghosh, Sibasish</au><au>Severini, Simone</au><au>Sudbery, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entangling power of permutations</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>72</volume><issue>1</issue><artnum>012314</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>The notion of entangling power of unitary matrices was introduced by Zanardi et al., [Phys. Rev. A 62, 030301 (2000)]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries, the identity and the swap. We construct the permutations with the minimum nonzero entangling power for every dimension. With the use of orthogonal latin squares, we construct the permutations with the maximum entangling power for every dimension. Moreover, we show that the value obtained is maximum over all unitaries of the same dimension, with a possible exception for 36. Our result enables us to construct generic examples of 4-qudit maximally entangled states for all dimensions except for 2 and 6. We numerically classify, according to their entangling power, the permutation matrices of dimensions 4 and 9, and we give some estimates for higher dimensions.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.72.012314</doi></addata></record>
fulltext fulltext
identifier ISSN: 1050-2947
ispartof Physical review. A, Atomic, molecular, and optical physics, 2005-07, Vol.72 (1), Article 012314
issn 1050-2947
1094-1622
language eng
recordid cdi_osti_scitechconnect_20718322
source American Physical Society Journals
subjects ALGEBRA
ATOMIC AND MOLECULAR PHYSICS
ENERGY LEVELS
MATRICES
QUANTUM ENTANGLEMENT
QUANTUM MECHANICS
UNITARITY
title Entangling power of permutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entangling%20power%20of%20permutations&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Clarisse,%20Lieven&rft.date=2005-07-01&rft.volume=72&rft.issue=1&rft.artnum=012314&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.72.012314&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_72_012314%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true