Monte Carlo simulation of equilibrium L1 ordering in FePt nanoparticles

First, second, and third nearest-neighbor mixing potentials for FePt alloys were calculated from first principles using the Connolly–Williams approach. Using the mixing potentials obtained in this manner, the dependency of equilibrium L10 ordering on temperature was studied for bulk and for a spheri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2005-05, Vol.97 (10)
Hauptverfasser: Chepulskii, R. V., Velev, J., Butler, W. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Journal of applied physics
container_volume 97
creator Chepulskii, R. V.
Velev, J.
Butler, W. H.
description First, second, and third nearest-neighbor mixing potentials for FePt alloys were calculated from first principles using the Connolly–Williams approach. Using the mixing potentials obtained in this manner, the dependency of equilibrium L10 ordering on temperature was studied for bulk and for a spherical nanoparticle with a 3.5-nm diameter at equiatomic composition by use of Monte Carlo simulation and the analytical ring approximation. The calculated order-disorder temperature for bulk (1495–1514K) was in relatively good agreement (4% error) with the experimental value (1572K). For nanoparticles of finite size, the (long-range) order parameter changed continuously from unity to zero with increasing temperature. Rather than a discontinuity indicative of a phase-transition we obtained an inflection point in the order as a function of temperature. This inflection point occurred at a temperature below the bulk phase-transition temperature and which decreased as the particle size decreased. Our calculations predict that 3.5-nm diameter particles in configurational equilibrium at 600°C (a typical annealing temperature for promoting L10 ordering) have an L10 order parameter of 0.83 (compared to a maximum possible value equal to unity). According to our investigations, the experimental absence of a (relatively) high L10 order in 3.5-nm diameter nanoparticles annealed at 600°C or below is primarily a problem of kinetics rather than equilibrium.
doi_str_mv 10.1063/1.1852351
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20711646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1852351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-e3b6bc14c90251f7c58200545dbc1c8e8b80e34988927e4686c181e9aa31ed8c3</originalsourceid><addsrcrecordid>eNotkMFKAzEURYMoWKsL_yDgysXU9yaTmWQpxVahogtdh0z6RiPTpCbpwr-3pV1duBzO4jB2izBDaMUDzlDJWkg8YxMEpatOSjhnE4AaK6U7fcmucv4BQFRCT9jyNYZCfG7TGHn2m91oi4-Bx4HT786Pvk9-t-Er5DGtKfnwxX3gC3ovPNgQtzYV70bK1-xisGOmm9NO2efi6WP-XK3eli_zx1XlailKRaJve4eN01BLHDonVQ0gG7nev06R6hWQaLRSuu6oaVXrUCFpawXSWjkxZXdHb8zFm-x8IfftYgjkiqmhQ2ybdk_dHymXYs6JBrNNfmPTn0Ewh04GzamT-AerC1jY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monte Carlo simulation of equilibrium L1 ordering in FePt nanoparticles</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Chepulskii, R. V. ; Velev, J. ; Butler, W. H.</creator><creatorcontrib>Chepulskii, R. V. ; Velev, J. ; Butler, W. H.</creatorcontrib><description>First, second, and third nearest-neighbor mixing potentials for FePt alloys were calculated from first principles using the Connolly–Williams approach. Using the mixing potentials obtained in this manner, the dependency of equilibrium L10 ordering on temperature was studied for bulk and for a spherical nanoparticle with a 3.5-nm diameter at equiatomic composition by use of Monte Carlo simulation and the analytical ring approximation. The calculated order-disorder temperature for bulk (1495–1514K) was in relatively good agreement (4% error) with the experimental value (1572K). For nanoparticles of finite size, the (long-range) order parameter changed continuously from unity to zero with increasing temperature. Rather than a discontinuity indicative of a phase-transition we obtained an inflection point in the order as a function of temperature. This inflection point occurred at a temperature below the bulk phase-transition temperature and which decreased as the particle size decreased. Our calculations predict that 3.5-nm diameter particles in configurational equilibrium at 600°C (a typical annealing temperature for promoting L10 ordering) have an L10 order parameter of 0.83 (compared to a maximum possible value equal to unity). According to our investigations, the experimental absence of a (relatively) high L10 order in 3.5-nm diameter nanoparticles annealed at 600°C or below is primarily a problem of kinetics rather than equilibrium.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1852351</identifier><language>eng</language><publisher>United States</publisher><subject>ANNEALING ; BINARY ALLOY SYSTEMS ; COMPUTERIZED SIMULATION ; FERROMAGNETIC MATERIALS ; IRON ALLOYS ; MATERIALS SCIENCE ; MIXING ; MONTE CARLO METHOD ; ORDER PARAMETERS ; ORDER-DISORDER TRANSFORMATIONS ; PLATINUM ALLOYS ; POTENTIALS ; TEMPERATURE DEPENDENCE ; TEMPERATURE RANGE 0400-1000 K ; TEMPERATURE RANGE 1000-4000 K ; TRANSITION TEMPERATURE</subject><ispartof>Journal of applied physics, 2005-05, Vol.97 (10)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-e3b6bc14c90251f7c58200545dbc1c8e8b80e34988927e4686c181e9aa31ed8c3</citedby><cites>FETCH-LOGICAL-c253t-e3b6bc14c90251f7c58200545dbc1c8e8b80e34988927e4686c181e9aa31ed8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20711646$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chepulskii, R. V.</creatorcontrib><creatorcontrib>Velev, J.</creatorcontrib><creatorcontrib>Butler, W. H.</creatorcontrib><title>Monte Carlo simulation of equilibrium L1 ordering in FePt nanoparticles</title><title>Journal of applied physics</title><description>First, second, and third nearest-neighbor mixing potentials for FePt alloys were calculated from first principles using the Connolly–Williams approach. Using the mixing potentials obtained in this manner, the dependency of equilibrium L10 ordering on temperature was studied for bulk and for a spherical nanoparticle with a 3.5-nm diameter at equiatomic composition by use of Monte Carlo simulation and the analytical ring approximation. The calculated order-disorder temperature for bulk (1495–1514K) was in relatively good agreement (4% error) with the experimental value (1572K). For nanoparticles of finite size, the (long-range) order parameter changed continuously from unity to zero with increasing temperature. Rather than a discontinuity indicative of a phase-transition we obtained an inflection point in the order as a function of temperature. This inflection point occurred at a temperature below the bulk phase-transition temperature and which decreased as the particle size decreased. Our calculations predict that 3.5-nm diameter particles in configurational equilibrium at 600°C (a typical annealing temperature for promoting L10 ordering) have an L10 order parameter of 0.83 (compared to a maximum possible value equal to unity). According to our investigations, the experimental absence of a (relatively) high L10 order in 3.5-nm diameter nanoparticles annealed at 600°C or below is primarily a problem of kinetics rather than equilibrium.</description><subject>ANNEALING</subject><subject>BINARY ALLOY SYSTEMS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>FERROMAGNETIC MATERIALS</subject><subject>IRON ALLOYS</subject><subject>MATERIALS SCIENCE</subject><subject>MIXING</subject><subject>MONTE CARLO METHOD</subject><subject>ORDER PARAMETERS</subject><subject>ORDER-DISORDER TRANSFORMATIONS</subject><subject>PLATINUM ALLOYS</subject><subject>POTENTIALS</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TEMPERATURE RANGE 0400-1000 K</subject><subject>TEMPERATURE RANGE 1000-4000 K</subject><subject>TRANSITION TEMPERATURE</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotkMFKAzEURYMoWKsL_yDgysXU9yaTmWQpxVahogtdh0z6RiPTpCbpwr-3pV1duBzO4jB2izBDaMUDzlDJWkg8YxMEpatOSjhnE4AaK6U7fcmucv4BQFRCT9jyNYZCfG7TGHn2m91oi4-Bx4HT786Pvk9-t-Er5DGtKfnwxX3gC3ovPNgQtzYV70bK1-xisGOmm9NO2efi6WP-XK3eli_zx1XlailKRaJve4eN01BLHDonVQ0gG7nev06R6hWQaLRSuu6oaVXrUCFpawXSWjkxZXdHb8zFm-x8IfftYgjkiqmhQ2ybdk_dHymXYs6JBrNNfmPTn0Ewh04GzamT-AerC1jY</recordid><startdate>20050515</startdate><enddate>20050515</enddate><creator>Chepulskii, R. V.</creator><creator>Velev, J.</creator><creator>Butler, W. H.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20050515</creationdate><title>Monte Carlo simulation of equilibrium L1 ordering in FePt nanoparticles</title><author>Chepulskii, R. V. ; Velev, J. ; Butler, W. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-e3b6bc14c90251f7c58200545dbc1c8e8b80e34988927e4686c181e9aa31ed8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ANNEALING</topic><topic>BINARY ALLOY SYSTEMS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>FERROMAGNETIC MATERIALS</topic><topic>IRON ALLOYS</topic><topic>MATERIALS SCIENCE</topic><topic>MIXING</topic><topic>MONTE CARLO METHOD</topic><topic>ORDER PARAMETERS</topic><topic>ORDER-DISORDER TRANSFORMATIONS</topic><topic>PLATINUM ALLOYS</topic><topic>POTENTIALS</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TEMPERATURE RANGE 0400-1000 K</topic><topic>TEMPERATURE RANGE 1000-4000 K</topic><topic>TRANSITION TEMPERATURE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chepulskii, R. V.</creatorcontrib><creatorcontrib>Velev, J.</creatorcontrib><creatorcontrib>Butler, W. H.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chepulskii, R. V.</au><au>Velev, J.</au><au>Butler, W. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulation of equilibrium L1 ordering in FePt nanoparticles</atitle><jtitle>Journal of applied physics</jtitle><date>2005-05-15</date><risdate>2005</risdate><volume>97</volume><issue>10</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>First, second, and third nearest-neighbor mixing potentials for FePt alloys were calculated from first principles using the Connolly–Williams approach. Using the mixing potentials obtained in this manner, the dependency of equilibrium L10 ordering on temperature was studied for bulk and for a spherical nanoparticle with a 3.5-nm diameter at equiatomic composition by use of Monte Carlo simulation and the analytical ring approximation. The calculated order-disorder temperature for bulk (1495–1514K) was in relatively good agreement (4% error) with the experimental value (1572K). For nanoparticles of finite size, the (long-range) order parameter changed continuously from unity to zero with increasing temperature. Rather than a discontinuity indicative of a phase-transition we obtained an inflection point in the order as a function of temperature. This inflection point occurred at a temperature below the bulk phase-transition temperature and which decreased as the particle size decreased. Our calculations predict that 3.5-nm diameter particles in configurational equilibrium at 600°C (a typical annealing temperature for promoting L10 ordering) have an L10 order parameter of 0.83 (compared to a maximum possible value equal to unity). According to our investigations, the experimental absence of a (relatively) high L10 order in 3.5-nm diameter nanoparticles annealed at 600°C or below is primarily a problem of kinetics rather than equilibrium.</abstract><cop>United States</cop><doi>10.1063/1.1852351</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2005-05, Vol.97 (10)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_20711646
source AIP Journals Complete; AIP Digital Archive
subjects ANNEALING
BINARY ALLOY SYSTEMS
COMPUTERIZED SIMULATION
FERROMAGNETIC MATERIALS
IRON ALLOYS
MATERIALS SCIENCE
MIXING
MONTE CARLO METHOD
ORDER PARAMETERS
ORDER-DISORDER TRANSFORMATIONS
PLATINUM ALLOYS
POTENTIALS
TEMPERATURE DEPENDENCE
TEMPERATURE RANGE 0400-1000 K
TEMPERATURE RANGE 1000-4000 K
TRANSITION TEMPERATURE
title Monte Carlo simulation of equilibrium L1 ordering in FePt nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T00%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulation%20of%20equilibrium%20L1%20ordering%20in%20FePt%20nanoparticles&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Chepulskii,%20R.%20V.&rft.date=2005-05-15&rft.volume=97&rft.issue=10&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1852351&rft_dat=%3Ccrossref_osti_%3E10_1063_1_1852351%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true