Dual families of noncommutative quantum systems

We demonstrate how a one parameter family of interacting noncommuting Hamiltonians, which are physically equivalent, can be constructed in noncommutative quantum mechanics. This construction is carried out exactly (to all orders in the noncommutative parameter) and analytically in two dimensions for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles and fields Particles and fields, 2005-04, Vol.71 (8), Article 085005
Hauptverfasser: Scholtz, Frederik G., Chakraborty, Biswajit, Gangopadhyay, Sunandan, Hazra, Arindam Ghosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. D, Particles and fields
container_volume 71
creator Scholtz, Frederik G.
Chakraborty, Biswajit
Gangopadhyay, Sunandan
Hazra, Arindam Ghosh
description We demonstrate how a one parameter family of interacting noncommuting Hamiltonians, which are physically equivalent, can be constructed in noncommutative quantum mechanics. This construction is carried out exactly (to all orders in the noncommutative parameter) and analytically in two dimensions for a free particle and a harmonic oscillator moving in a constant magnetic field. We discuss the significance of the Seiberg-Witten map in this context. It is shown for the harmonic oscillator potential that an approximate duality, valid in the low-energy sector, can be constructed between the interacting commutative and a noninteracting noncommutative Hamiltonian. This approximation holds to order 1/B and is therefore valid in the case of strong magnetic fields and weak Landau-level mixing.
doi_str_mv 10.1103/PhysRevD.71.085005
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20709109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_71_085005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-b636459141fc3255c18a802e9427e6dd37fcd61d651d0ab2fee57dbff38303503</originalsourceid><addsrcrecordid>eNo1kE9LwzAYh4MoOKdfwFPBc7f3TZqkPcqmUxgooueQ5g-rNK026aDfXqXz9PsdHp7DQ8gtwgoR2Pr1MMU3d9yuJK6g5AD8jCyQc8gpE-X56cuqKi_JVYyfAIwKKRdkvR11m3kdmrZxMet91vWd6UMYk07N0WXfo-7SGLI4xeRCvCYXXrfR3Zx2ST4eH943T_n-Zfe8ud_nhkqe8lowUfAKC_SGUc4NlroE6qqCSiesZdIbK9AKjhZ0Tb1zXNrae1YyYBzYktzN3j6mRkXTJGcOpu86Z5KiIKFCqH4pOlNm6GMcnFdfQxP0MCkE9RdG_YdREtUchv0ApsJXpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual families of noncommutative quantum systems</title><source>American Physical Society Journals</source><creator>Scholtz, Frederik G. ; Chakraborty, Biswajit ; Gangopadhyay, Sunandan ; Hazra, Arindam Ghosh</creator><creatorcontrib>Scholtz, Frederik G. ; Chakraborty, Biswajit ; Gangopadhyay, Sunandan ; Hazra, Arindam Ghosh</creatorcontrib><description>We demonstrate how a one parameter family of interacting noncommuting Hamiltonians, which are physically equivalent, can be constructed in noncommutative quantum mechanics. This construction is carried out exactly (to all orders in the noncommutative parameter) and analytically in two dimensions for a free particle and a harmonic oscillator moving in a constant magnetic field. We discuss the significance of the Seiberg-Witten map in this context. It is shown for the harmonic oscillator potential that an approximate duality, valid in the low-energy sector, can be constructed between the interacting commutative and a noninteracting noncommutative Hamiltonian. This approximation holds to order 1/B and is therefore valid in the case of strong magnetic fields and weak Landau-level mixing.</description><identifier>ISSN: 1550-7998</identifier><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1550-2368</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.71.085005</identifier><language>eng</language><publisher>United States</publisher><subject>COMMUTATION RELATIONS ; DUALITY ; HAMILTONIANS ; HARMONIC OSCILLATORS ; MAGNETIC FIELDS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; POTENTIALS ; QUANTUM FIELD THEORY ; QUANTUM MECHANICS</subject><ispartof>Physical review. D, Particles and fields, 2005-04, Vol.71 (8), Article 085005</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-b636459141fc3255c18a802e9427e6dd37fcd61d651d0ab2fee57dbff38303503</citedby><cites>FETCH-LOGICAL-c275t-b636459141fc3255c18a802e9427e6dd37fcd61d651d0ab2fee57dbff38303503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20709109$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Scholtz, Frederik G.</creatorcontrib><creatorcontrib>Chakraborty, Biswajit</creatorcontrib><creatorcontrib>Gangopadhyay, Sunandan</creatorcontrib><creatorcontrib>Hazra, Arindam Ghosh</creatorcontrib><title>Dual families of noncommutative quantum systems</title><title>Physical review. D, Particles and fields</title><description>We demonstrate how a one parameter family of interacting noncommuting Hamiltonians, which are physically equivalent, can be constructed in noncommutative quantum mechanics. This construction is carried out exactly (to all orders in the noncommutative parameter) and analytically in two dimensions for a free particle and a harmonic oscillator moving in a constant magnetic field. We discuss the significance of the Seiberg-Witten map in this context. It is shown for the harmonic oscillator potential that an approximate duality, valid in the low-energy sector, can be constructed between the interacting commutative and a noninteracting noncommutative Hamiltonian. This approximation holds to order 1/B and is therefore valid in the case of strong magnetic fields and weak Landau-level mixing.</description><subject>COMMUTATION RELATIONS</subject><subject>DUALITY</subject><subject>HAMILTONIANS</subject><subject>HARMONIC OSCILLATORS</subject><subject>MAGNETIC FIELDS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>POTENTIALS</subject><subject>QUANTUM FIELD THEORY</subject><subject>QUANTUM MECHANICS</subject><issn>1550-7998</issn><issn>0556-2821</issn><issn>1550-2368</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo1kE9LwzAYh4MoOKdfwFPBc7f3TZqkPcqmUxgooueQ5g-rNK026aDfXqXz9PsdHp7DQ8gtwgoR2Pr1MMU3d9yuJK6g5AD8jCyQc8gpE-X56cuqKi_JVYyfAIwKKRdkvR11m3kdmrZxMet91vWd6UMYk07N0WXfo-7SGLI4xeRCvCYXXrfR3Zx2ST4eH943T_n-Zfe8ud_nhkqe8lowUfAKC_SGUc4NlroE6qqCSiesZdIbK9AKjhZ0Tb1zXNrae1YyYBzYktzN3j6mRkXTJGcOpu86Z5KiIKFCqH4pOlNm6GMcnFdfQxP0MCkE9RdG_YdREtUchv0ApsJXpg</recordid><startdate>20050415</startdate><enddate>20050415</enddate><creator>Scholtz, Frederik G.</creator><creator>Chakraborty, Biswajit</creator><creator>Gangopadhyay, Sunandan</creator><creator>Hazra, Arindam Ghosh</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20050415</creationdate><title>Dual families of noncommutative quantum systems</title><author>Scholtz, Frederik G. ; Chakraborty, Biswajit ; Gangopadhyay, Sunandan ; Hazra, Arindam Ghosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-b636459141fc3255c18a802e9427e6dd37fcd61d651d0ab2fee57dbff38303503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>COMMUTATION RELATIONS</topic><topic>DUALITY</topic><topic>HAMILTONIANS</topic><topic>HARMONIC OSCILLATORS</topic><topic>MAGNETIC FIELDS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>POTENTIALS</topic><topic>QUANTUM FIELD THEORY</topic><topic>QUANTUM MECHANICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Scholtz, Frederik G.</creatorcontrib><creatorcontrib>Chakraborty, Biswajit</creatorcontrib><creatorcontrib>Gangopadhyay, Sunandan</creatorcontrib><creatorcontrib>Hazra, Arindam Ghosh</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholtz, Frederik G.</au><au>Chakraborty, Biswajit</au><au>Gangopadhyay, Sunandan</au><au>Hazra, Arindam Ghosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual families of noncommutative quantum systems</atitle><jtitle>Physical review. D, Particles and fields</jtitle><date>2005-04-15</date><risdate>2005</risdate><volume>71</volume><issue>8</issue><artnum>085005</artnum><issn>1550-7998</issn><issn>0556-2821</issn><eissn>1550-2368</eissn><eissn>1089-4918</eissn><abstract>We demonstrate how a one parameter family of interacting noncommuting Hamiltonians, which are physically equivalent, can be constructed in noncommutative quantum mechanics. This construction is carried out exactly (to all orders in the noncommutative parameter) and analytically in two dimensions for a free particle and a harmonic oscillator moving in a constant magnetic field. We discuss the significance of the Seiberg-Witten map in this context. It is shown for the harmonic oscillator potential that an approximate duality, valid in the low-energy sector, can be constructed between the interacting commutative and a noninteracting noncommutative Hamiltonian. This approximation holds to order 1/B and is therefore valid in the case of strong magnetic fields and weak Landau-level mixing.</abstract><cop>United States</cop><doi>10.1103/PhysRevD.71.085005</doi></addata></record>
fulltext fulltext
identifier ISSN: 1550-7998
ispartof Physical review. D, Particles and fields, 2005-04, Vol.71 (8), Article 085005
issn 1550-7998
0556-2821
1550-2368
1089-4918
language eng
recordid cdi_osti_scitechconnect_20709109
source American Physical Society Journals
subjects COMMUTATION RELATIONS
DUALITY
HAMILTONIANS
HARMONIC OSCILLATORS
MAGNETIC FIELDS
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
POTENTIALS
QUANTUM FIELD THEORY
QUANTUM MECHANICS
title Dual families of noncommutative quantum systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20families%20of%20noncommutative%20quantum%20systems&rft.jtitle=Physical%20review.%20D,%20Particles%20and%20fields&rft.au=Scholtz,%20Frederik%20G.&rft.date=2005-04-15&rft.volume=71&rft.issue=8&rft.artnum=085005&rft.issn=1550-7998&rft.eissn=1550-2368&rft_id=info:doi/10.1103/PhysRevD.71.085005&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevD_71_085005%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true