Application of wavelets to singular integral scattering equations

The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. C, Nuclear physics Nuclear physics, 2004-09, Vol.70 (3), Article 034003
Hauptverfasser: Kessler, B. M., Payne, G. L., Polyzou, W. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physical review. C, Nuclear physics
container_volume 70
creator Kessler, B. M.
Payne, G. L.
Polyzou, W. N.
description The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems.
doi_str_mv 10.1103/PhysRevC.70.034003
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20695500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_70_034003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-42545f4dedf5121aa0bfaa3d5fae25b3756ac60209c0e05e8f5d795f3a9960c13</originalsourceid><addsrcrecordid>eNo1kE9LAzEQxYMoWKtfwFPA89ZJsrPbHEvxHxQUUfAW0uykjay7NUkr_fauVt_lweO9gfkxdilgIgSo66f1Pj3Tbj6pYQKqBFBHbCRgqotSw9sxGwFiVcipUKfsLKV3GKRUNWKz2WbTBmdz6Dvee_5ld9RSTjz3PIVutW1t5KHLtIq25WkoZopDzulz-ztK5-zE2zbRxZ-P2evtzcv8vlg83j3MZ4vCyRpzUUos0ZcNNR6FFNbC0lurGvSWJC5VjZV1FUjQDgiQph6bWqNXVusKnFBjdnW426ccTHIhk1u7vuvIZSOh0ojDT2MmDy0X-5QiebOJ4cPGvRFgflCZf1SmBnNApb4BzsRfEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of wavelets to singular integral scattering equations</title><source>American Physical Society Journals</source><creator>Kessler, B. M. ; Payne, G. L. ; Polyzou, W. N.</creator><creatorcontrib>Kessler, B. M. ; Payne, G. L. ; Polyzou, W. N.</creatorcontrib><description>The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems.</description><identifier>ISSN: 0556-2813</identifier><identifier>EISSN: 1089-490X</identifier><identifier>DOI: 10.1103/PhysRevC.70.034003</identifier><language>eng</language><publisher>United States</publisher><subject>EFFICIENCY ; INTEGRAL EQUATIONS ; INTEGRALS ; ITERATIVE METHODS ; MATHEMATICAL SOLUTIONS ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; NUCLEAR REACTIONS ; NUCLEONS ; PARTIAL WAVES ; S MATRIX ; SCATTERING ; TWO-BODY PROBLEM</subject><ispartof>Physical review. C, Nuclear physics, 2004-09, Vol.70 (3), Article 034003</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-42545f4dedf5121aa0bfaa3d5fae25b3756ac60209c0e05e8f5d795f3a9960c13</citedby><cites>FETCH-LOGICAL-c275t-42545f4dedf5121aa0bfaa3d5fae25b3756ac60209c0e05e8f5d795f3a9960c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20695500$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kessler, B. M.</creatorcontrib><creatorcontrib>Payne, G. L.</creatorcontrib><creatorcontrib>Polyzou, W. N.</creatorcontrib><title>Application of wavelets to singular integral scattering equations</title><title>Physical review. C, Nuclear physics</title><description>The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems.</description><subject>EFFICIENCY</subject><subject>INTEGRAL EQUATIONS</subject><subject>INTEGRALS</subject><subject>ITERATIVE METHODS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>NUCLEAR REACTIONS</subject><subject>NUCLEONS</subject><subject>PARTIAL WAVES</subject><subject>S MATRIX</subject><subject>SCATTERING</subject><subject>TWO-BODY PROBLEM</subject><issn>0556-2813</issn><issn>1089-490X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNo1kE9LAzEQxYMoWKtfwFPA89ZJsrPbHEvxHxQUUfAW0uykjay7NUkr_fauVt_lweO9gfkxdilgIgSo66f1Pj3Tbj6pYQKqBFBHbCRgqotSw9sxGwFiVcipUKfsLKV3GKRUNWKz2WbTBmdz6Dvee_5ld9RSTjz3PIVutW1t5KHLtIq25WkoZopDzulz-ztK5-zE2zbRxZ-P2evtzcv8vlg83j3MZ4vCyRpzUUos0ZcNNR6FFNbC0lurGvSWJC5VjZV1FUjQDgiQph6bWqNXVusKnFBjdnW426ccTHIhk1u7vuvIZSOh0ojDT2MmDy0X-5QiebOJ4cPGvRFgflCZf1SmBnNApb4BzsRfEw</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Kessler, B. M.</creator><creator>Payne, G. L.</creator><creator>Polyzou, W. N.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20040901</creationdate><title>Application of wavelets to singular integral scattering equations</title><author>Kessler, B. M. ; Payne, G. L. ; Polyzou, W. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-42545f4dedf5121aa0bfaa3d5fae25b3756ac60209c0e05e8f5d795f3a9960c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>EFFICIENCY</topic><topic>INTEGRAL EQUATIONS</topic><topic>INTEGRALS</topic><topic>ITERATIVE METHODS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>NUCLEAR REACTIONS</topic><topic>NUCLEONS</topic><topic>PARTIAL WAVES</topic><topic>S MATRIX</topic><topic>SCATTERING</topic><topic>TWO-BODY PROBLEM</topic><toplevel>online_resources</toplevel><creatorcontrib>Kessler, B. M.</creatorcontrib><creatorcontrib>Payne, G. L.</creatorcontrib><creatorcontrib>Polyzou, W. N.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. C, Nuclear physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler, B. M.</au><au>Payne, G. L.</au><au>Polyzou, W. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of wavelets to singular integral scattering equations</atitle><jtitle>Physical review. C, Nuclear physics</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>70</volume><issue>3</issue><artnum>034003</artnum><issn>0556-2813</issn><eissn>1089-490X</eissn><abstract>The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems.</abstract><cop>United States</cop><doi>10.1103/PhysRevC.70.034003</doi></addata></record>
fulltext fulltext
identifier ISSN: 0556-2813
ispartof Physical review. C, Nuclear physics, 2004-09, Vol.70 (3), Article 034003
issn 0556-2813
1089-490X
language eng
recordid cdi_osti_scitechconnect_20695500
source American Physical Society Journals
subjects EFFICIENCY
INTEGRAL EQUATIONS
INTEGRALS
ITERATIVE METHODS
MATHEMATICAL SOLUTIONS
NUCLEAR PHYSICS AND RADIATION PHYSICS
NUCLEAR REACTIONS
NUCLEONS
PARTIAL WAVES
S MATRIX
SCATTERING
TWO-BODY PROBLEM
title Application of wavelets to singular integral scattering equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20wavelets%20to%20singular%20integral%20scattering%20equations&rft.jtitle=Physical%20review.%20C,%20Nuclear%20physics&rft.au=Kessler,%20B.%20M.&rft.date=2004-09-01&rft.volume=70&rft.issue=3&rft.artnum=034003&rft.issn=0556-2813&rft.eissn=1089-490X&rft_id=info:doi/10.1103/PhysRevC.70.034003&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevC_70_034003%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true