Application of wavelets to singular integral scattering equations
The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient me...
Gespeichert in:
Veröffentlicht in: | Physical review. C, Nuclear physics Nuclear physics, 2004-09, Vol.70 (3), Article 034003 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physical review. C, Nuclear physics |
container_volume | 70 |
creator | Kessler, B. M. Payne, G. L. Polyzou, W. N. |
description | The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems. |
doi_str_mv | 10.1103/PhysRevC.70.034003 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20695500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_70_034003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-42545f4dedf5121aa0bfaa3d5fae25b3756ac60209c0e05e8f5d795f3a9960c13</originalsourceid><addsrcrecordid>eNo1kE9LAzEQxYMoWKtfwFPA89ZJsrPbHEvxHxQUUfAW0uykjay7NUkr_fauVt_lweO9gfkxdilgIgSo66f1Pj3Tbj6pYQKqBFBHbCRgqotSw9sxGwFiVcipUKfsLKV3GKRUNWKz2WbTBmdz6Dvee_5ld9RSTjz3PIVutW1t5KHLtIq25WkoZopDzulz-ztK5-zE2zbRxZ-P2evtzcv8vlg83j3MZ4vCyRpzUUos0ZcNNR6FFNbC0lurGvSWJC5VjZV1FUjQDgiQph6bWqNXVusKnFBjdnW426ccTHIhk1u7vuvIZSOh0ojDT2MmDy0X-5QiebOJ4cPGvRFgflCZf1SmBnNApb4BzsRfEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of wavelets to singular integral scattering equations</title><source>American Physical Society Journals</source><creator>Kessler, B. M. ; Payne, G. L. ; Polyzou, W. N.</creator><creatorcontrib>Kessler, B. M. ; Payne, G. L. ; Polyzou, W. N.</creatorcontrib><description>The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems.</description><identifier>ISSN: 0556-2813</identifier><identifier>EISSN: 1089-490X</identifier><identifier>DOI: 10.1103/PhysRevC.70.034003</identifier><language>eng</language><publisher>United States</publisher><subject>EFFICIENCY ; INTEGRAL EQUATIONS ; INTEGRALS ; ITERATIVE METHODS ; MATHEMATICAL SOLUTIONS ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; NUCLEAR REACTIONS ; NUCLEONS ; PARTIAL WAVES ; S MATRIX ; SCATTERING ; TWO-BODY PROBLEM</subject><ispartof>Physical review. C, Nuclear physics, 2004-09, Vol.70 (3), Article 034003</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-42545f4dedf5121aa0bfaa3d5fae25b3756ac60209c0e05e8f5d795f3a9960c13</citedby><cites>FETCH-LOGICAL-c275t-42545f4dedf5121aa0bfaa3d5fae25b3756ac60209c0e05e8f5d795f3a9960c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20695500$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kessler, B. M.</creatorcontrib><creatorcontrib>Payne, G. L.</creatorcontrib><creatorcontrib>Polyzou, W. N.</creatorcontrib><title>Application of wavelets to singular integral scattering equations</title><title>Physical review. C, Nuclear physics</title><description>The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems.</description><subject>EFFICIENCY</subject><subject>INTEGRAL EQUATIONS</subject><subject>INTEGRALS</subject><subject>ITERATIVE METHODS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>NUCLEAR REACTIONS</subject><subject>NUCLEONS</subject><subject>PARTIAL WAVES</subject><subject>S MATRIX</subject><subject>SCATTERING</subject><subject>TWO-BODY PROBLEM</subject><issn>0556-2813</issn><issn>1089-490X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNo1kE9LAzEQxYMoWKtfwFPA89ZJsrPbHEvxHxQUUfAW0uykjay7NUkr_fauVt_lweO9gfkxdilgIgSo66f1Pj3Tbj6pYQKqBFBHbCRgqotSw9sxGwFiVcipUKfsLKV3GKRUNWKz2WbTBmdz6Dvee_5ld9RSTjz3PIVutW1t5KHLtIq25WkoZopDzulz-ztK5-zE2zbRxZ-P2evtzcv8vlg83j3MZ4vCyRpzUUos0ZcNNR6FFNbC0lurGvSWJC5VjZV1FUjQDgiQph6bWqNXVusKnFBjdnW426ccTHIhk1u7vuvIZSOh0ojDT2MmDy0X-5QiebOJ4cPGvRFgflCZf1SmBnNApb4BzsRfEw</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Kessler, B. M.</creator><creator>Payne, G. L.</creator><creator>Polyzou, W. N.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20040901</creationdate><title>Application of wavelets to singular integral scattering equations</title><author>Kessler, B. M. ; Payne, G. L. ; Polyzou, W. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-42545f4dedf5121aa0bfaa3d5fae25b3756ac60209c0e05e8f5d795f3a9960c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>EFFICIENCY</topic><topic>INTEGRAL EQUATIONS</topic><topic>INTEGRALS</topic><topic>ITERATIVE METHODS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>NUCLEAR REACTIONS</topic><topic>NUCLEONS</topic><topic>PARTIAL WAVES</topic><topic>S MATRIX</topic><topic>SCATTERING</topic><topic>TWO-BODY PROBLEM</topic><toplevel>online_resources</toplevel><creatorcontrib>Kessler, B. M.</creatorcontrib><creatorcontrib>Payne, G. L.</creatorcontrib><creatorcontrib>Polyzou, W. N.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. C, Nuclear physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler, B. M.</au><au>Payne, G. L.</au><au>Polyzou, W. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of wavelets to singular integral scattering equations</atitle><jtitle>Physical review. C, Nuclear physics</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>70</volume><issue>3</issue><artnum>034003</artnum><issn>0556-2813</issn><eissn>1089-490X</eissn><abstract>The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems.</abstract><cop>United States</cop><doi>10.1103/PhysRevC.70.034003</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0556-2813 |
ispartof | Physical review. C, Nuclear physics, 2004-09, Vol.70 (3), Article 034003 |
issn | 0556-2813 1089-490X |
language | eng |
recordid | cdi_osti_scitechconnect_20695500 |
source | American Physical Society Journals |
subjects | EFFICIENCY INTEGRAL EQUATIONS INTEGRALS ITERATIVE METHODS MATHEMATICAL SOLUTIONS NUCLEAR PHYSICS AND RADIATION PHYSICS NUCLEAR REACTIONS NUCLEONS PARTIAL WAVES S MATRIX SCATTERING TWO-BODY PROBLEM |
title | Application of wavelets to singular integral scattering equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20wavelets%20to%20singular%20integral%20scattering%20equations&rft.jtitle=Physical%20review.%20C,%20Nuclear%20physics&rft.au=Kessler,%20B.%20M.&rft.date=2004-09-01&rft.volume=70&rft.issue=3&rft.artnum=034003&rft.issn=0556-2813&rft.eissn=1089-490X&rft_id=info:doi/10.1103/PhysRevC.70.034003&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevC_70_034003%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |