Fluorescence photon migration by the boundary element method

The use of the boundary element method (BEM) is explored as an alternative to the finite element method (FEM) solution methodology for the elliptic equations used to model the generation and transport of fluorescent light in highly scattering media, without the need for an internal volume mesh. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2005-11, Vol.210 (1), p.109-132
Hauptverfasser: Fedele, Francesco, Eppstein, Margaret J., Laible, Jeffrey P., Godavarty, Anuradha, Sevick-Muraca, Eva M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue 1
container_start_page 109
container_title Journal of computational physics
container_volume 210
creator Fedele, Francesco
Eppstein, Margaret J.
Laible, Jeffrey P.
Godavarty, Anuradha
Sevick-Muraca, Eva M.
description The use of the boundary element method (BEM) is explored as an alternative to the finite element method (FEM) solution methodology for the elliptic equations used to model the generation and transport of fluorescent light in highly scattering media, without the need for an internal volume mesh. The method is appropriate for domains where it is reasonable to assume the fluorescent properties are regionally homogeneous, such as when using highly specific molecularly targeted fluorescent contrast agents in biological tissues. In comparison to analytical results on a homogeneous sphere, BEM predictions of complex emission fluence are shown to be more accurate and stable than those of the FEM. Emission fluence predictions made with the BEM using a 708-node mesh, with roughly double the inter-node spacing of boundary nodes as in a 6956-node FEM mesh, match experimental frequency-domain fluorescence emission measurements acquired on a 1087 cm 3 breast-mimicking phantom at least as well as those of the FEM, but require only 1/8 to 1/2 the computation time.
doi_str_mv 10.1016/j.jcp.2005.04.003
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20687264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999105002007</els_id><sourcerecordid>1082171836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-cd6a953300dfa6f6a119ade187c07a803c4fc35a2008172dac55502c5d5f946f3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJoZuPH9CbIRR6sTuyLVmmvZQlmxQWcmnOQhmNay22tZG0hfz7yGygt540h-cdvfMw9plDxYHLb4fqgMeqBhAVtBVA84FtOPRQ1h2XF2wDUPOy73v-iV3GeAAAJVq1YT9208kHikgLUnEcffJLMbs_wSSXp-fXIo1UPPvTYk14LWiimZZUzJRGb6_Zx8FMkW7e3yv2tLv7vX0o94_3v7Y_9yU2SqUSrTS9aBoAOxg5SMN5byxx1SF0RkGD7YCNMLm94l1tDQohoEZhxdC3cmiu2O15r4_J6YguEY7ol4Uw6Rqk6mrZZurrmToG_3KimPTs8l3TZBbyp6g5qJp3XDUyo_yMYvAxBhr0Mbg5H5ghvfrUB5196tWnhlZnnznz5X29iWimIZgFXfwX7HJMSpG572eOspG_jsJaeLVrXVj7Wu_-88sbj1aJVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082171836</pqid></control><display><type>article</type><title>Fluorescence photon migration by the boundary element method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Fedele, Francesco ; Eppstein, Margaret J. ; Laible, Jeffrey P. ; Godavarty, Anuradha ; Sevick-Muraca, Eva M.</creator><creatorcontrib>Fedele, Francesco ; Eppstein, Margaret J. ; Laible, Jeffrey P. ; Godavarty, Anuradha ; Sevick-Muraca, Eva M.</creatorcontrib><description>The use of the boundary element method (BEM) is explored as an alternative to the finite element method (FEM) solution methodology for the elliptic equations used to model the generation and transport of fluorescent light in highly scattering media, without the need for an internal volume mesh. The method is appropriate for domains where it is reasonable to assume the fluorescent properties are regionally homogeneous, such as when using highly specific molecularly targeted fluorescent contrast agents in biological tissues. In comparison to analytical results on a homogeneous sphere, BEM predictions of complex emission fluence are shown to be more accurate and stable than those of the FEM. Emission fluence predictions made with the BEM using a 708-node mesh, with roughly double the inter-node spacing of boundary nodes as in a 6956-node FEM mesh, match experimental frequency-domain fluorescence emission measurements acquired on a 1087 cm 3 breast-mimicking phantom at least as well as those of the FEM, but require only 1/8 to 1/2 the computation time.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2005.04.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>BOUNDARY ELEMENT METHOD ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computation ; Computational techniques ; CONTRAST MEDIA ; Coupled elliptic equations ; Emission ; EQUATIONS ; Exact sciences and technology ; Finite element method ; Flourescence tomography ; Fluence ; FLUORESCENCE ; Frequency domain photon migration ; MAMMARY GLANDS ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; PHANTOMS ; PHOTONS ; Physics ; TOMOGRAPHY ; VISIBLE RADIATION</subject><ispartof>Journal of computational physics, 2005-11, Vol.210 (1), p.109-132</ispartof><rights>2005 Elsevier Inc.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-cd6a953300dfa6f6a119ade187c07a803c4fc35a2008172dac55502c5d5f946f3</citedby><cites>FETCH-LOGICAL-c388t-cd6a953300dfa6f6a119ade187c07a803c4fc35a2008172dac55502c5d5f946f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2005.04.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17016665$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20687264$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fedele, Francesco</creatorcontrib><creatorcontrib>Eppstein, Margaret J.</creatorcontrib><creatorcontrib>Laible, Jeffrey P.</creatorcontrib><creatorcontrib>Godavarty, Anuradha</creatorcontrib><creatorcontrib>Sevick-Muraca, Eva M.</creatorcontrib><title>Fluorescence photon migration by the boundary element method</title><title>Journal of computational physics</title><description>The use of the boundary element method (BEM) is explored as an alternative to the finite element method (FEM) solution methodology for the elliptic equations used to model the generation and transport of fluorescent light in highly scattering media, without the need for an internal volume mesh. The method is appropriate for domains where it is reasonable to assume the fluorescent properties are regionally homogeneous, such as when using highly specific molecularly targeted fluorescent contrast agents in biological tissues. In comparison to analytical results on a homogeneous sphere, BEM predictions of complex emission fluence are shown to be more accurate and stable than those of the FEM. Emission fluence predictions made with the BEM using a 708-node mesh, with roughly double the inter-node spacing of boundary nodes as in a 6956-node FEM mesh, match experimental frequency-domain fluorescence emission measurements acquired on a 1087 cm 3 breast-mimicking phantom at least as well as those of the FEM, but require only 1/8 to 1/2 the computation time.</description><subject>BOUNDARY ELEMENT METHOD</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computation</subject><subject>Computational techniques</subject><subject>CONTRAST MEDIA</subject><subject>Coupled elliptic equations</subject><subject>Emission</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Flourescence tomography</subject><subject>Fluence</subject><subject>FLUORESCENCE</subject><subject>Frequency domain photon migration</subject><subject>MAMMARY GLANDS</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>PHANTOMS</subject><subject>PHOTONS</subject><subject>Physics</subject><subject>TOMOGRAPHY</subject><subject>VISIBLE RADIATION</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVJoZuPH9CbIRR6sTuyLVmmvZQlmxQWcmnOQhmNay22tZG0hfz7yGygt540h-cdvfMw9plDxYHLb4fqgMeqBhAVtBVA84FtOPRQ1h2XF2wDUPOy73v-iV3GeAAAJVq1YT9208kHikgLUnEcffJLMbs_wSSXp-fXIo1UPPvTYk14LWiimZZUzJRGb6_Zx8FMkW7e3yv2tLv7vX0o94_3v7Y_9yU2SqUSrTS9aBoAOxg5SMN5byxx1SF0RkGD7YCNMLm94l1tDQohoEZhxdC3cmiu2O15r4_J6YguEY7ol4Uw6Rqk6mrZZurrmToG_3KimPTs8l3TZBbyp6g5qJp3XDUyo_yMYvAxBhr0Mbg5H5ghvfrUB5196tWnhlZnnznz5X29iWimIZgFXfwX7HJMSpG572eOspG_jsJaeLVrXVj7Wu_-88sbj1aJVA</recordid><startdate>20051120</startdate><enddate>20051120</enddate><creator>Fedele, Francesco</creator><creator>Eppstein, Margaret J.</creator><creator>Laible, Jeffrey P.</creator><creator>Godavarty, Anuradha</creator><creator>Sevick-Muraca, Eva M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20051120</creationdate><title>Fluorescence photon migration by the boundary element method</title><author>Fedele, Francesco ; Eppstein, Margaret J. ; Laible, Jeffrey P. ; Godavarty, Anuradha ; Sevick-Muraca, Eva M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-cd6a953300dfa6f6a119ade187c07a803c4fc35a2008172dac55502c5d5f946f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>BOUNDARY ELEMENT METHOD</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computation</topic><topic>Computational techniques</topic><topic>CONTRAST MEDIA</topic><topic>Coupled elliptic equations</topic><topic>Emission</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Flourescence tomography</topic><topic>Fluence</topic><topic>FLUORESCENCE</topic><topic>Frequency domain photon migration</topic><topic>MAMMARY GLANDS</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>PHANTOMS</topic><topic>PHOTONS</topic><topic>Physics</topic><topic>TOMOGRAPHY</topic><topic>VISIBLE RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedele, Francesco</creatorcontrib><creatorcontrib>Eppstein, Margaret J.</creatorcontrib><creatorcontrib>Laible, Jeffrey P.</creatorcontrib><creatorcontrib>Godavarty, Anuradha</creatorcontrib><creatorcontrib>Sevick-Muraca, Eva M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedele, Francesco</au><au>Eppstein, Margaret J.</au><au>Laible, Jeffrey P.</au><au>Godavarty, Anuradha</au><au>Sevick-Muraca, Eva M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescence photon migration by the boundary element method</atitle><jtitle>Journal of computational physics</jtitle><date>2005-11-20</date><risdate>2005</risdate><volume>210</volume><issue>1</issue><spage>109</spage><epage>132</epage><pages>109-132</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The use of the boundary element method (BEM) is explored as an alternative to the finite element method (FEM) solution methodology for the elliptic equations used to model the generation and transport of fluorescent light in highly scattering media, without the need for an internal volume mesh. The method is appropriate for domains where it is reasonable to assume the fluorescent properties are regionally homogeneous, such as when using highly specific molecularly targeted fluorescent contrast agents in biological tissues. In comparison to analytical results on a homogeneous sphere, BEM predictions of complex emission fluence are shown to be more accurate and stable than those of the FEM. Emission fluence predictions made with the BEM using a 708-node mesh, with roughly double the inter-node spacing of boundary nodes as in a 6956-node FEM mesh, match experimental frequency-domain fluorescence emission measurements acquired on a 1087 cm 3 breast-mimicking phantom at least as well as those of the FEM, but require only 1/8 to 1/2 the computation time.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2005.04.003</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2005-11, Vol.210 (1), p.109-132
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_20687264
source Access via ScienceDirect (Elsevier)
subjects BOUNDARY ELEMENT METHOD
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computation
Computational techniques
CONTRAST MEDIA
Coupled elliptic equations
Emission
EQUATIONS
Exact sciences and technology
Finite element method
Flourescence tomography
Fluence
FLUORESCENCE
Frequency domain photon migration
MAMMARY GLANDS
Mathematical analysis
Mathematical methods in physics
Mathematical models
PHANTOMS
PHOTONS
Physics
TOMOGRAPHY
VISIBLE RADIATION
title Fluorescence photon migration by the boundary element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescence%20photon%20migration%20by%20the%20boundary%20element%20method&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Fedele,%20Francesco&rft.date=2005-11-20&rft.volume=210&rft.issue=1&rft.spage=109&rft.epage=132&rft.pages=109-132&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2005.04.003&rft_dat=%3Cproquest_osti_%3E1082171836%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082171836&rft_id=info:pmid/&rft_els_id=S0021999105002007&rfr_iscdi=true