Motional stability of the quantum kicked rotor: A fidelity approach

We propose an atom optics experiment to measure the stability of the quantum kicked rotor under perturbations of the Hamiltonian. We avail ourselves of the theory of Loschmidt echoes, i.e., we consider the overlap of a quantum state evolved in a perturbed and an unperturbed potential. Atom interfero...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2005-04, Vol.71 (4), Article 043803
Hauptverfasser: Haug, F., Bienert, M., Schleich, W. P., Seligman, T. H., Raizen, M. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physical review. A, Atomic, molecular, and optical physics
container_volume 71
creator Haug, F.
Bienert, M.
Schleich, W. P.
Seligman, T. H.
Raizen, M. G.
description We propose an atom optics experiment to measure the stability of the quantum kicked rotor under perturbations of the Hamiltonian. We avail ourselves of the theory of Loschmidt echoes, i.e., we consider the overlap of a quantum state evolved in a perturbed and an unperturbed potential. Atom interferometry allows us to determine the overlap integral in amplitude and phase. A numerical analysis of the kicked rotor in various regimes shows that the quantum signatures of specific classical properties can be detected experimentally.
doi_str_mv 10.1103/PhysRevA.71.043803
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20653342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_71_043803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-26e597d97fdfeee532d43789338601f13739782c0d015f591a46380acb4a6f313</originalsourceid><addsrcrecordid>eNo1kE1LAzEURYMoWKt_wFXA9dS8vMxk4q4Uv6CiiK5DmkmY2HZSk1Tov7dafZv7FocL9xByCWwCwPD6pd_lV_c1nUiYMIEtwyMyAqZEBQ3nxz9_zSquhDwlZzl_sP2JVo3I7CmWEAezormYRViFsqPR09I7-rk1Q9mu6TLYpetoiiWmGzqlPnTulzObTYrG9ufkxJtVdhd_OSbvd7dvs4dq_nz_OJvOK4sCSsUbVyvZKek775yrkXcCZasQ24aBB5SoZMst6xjUvlZgRLNfYuxCmMYj4JhcHXpjLkFnG4qzvY3D4GzRnDU1ouB7ih8om2LOyXm9SWFt0k4D0z-y9L8sLUEfZOE3NkxdpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Motional stability of the quantum kicked rotor: A fidelity approach</title><source>American Physical Society Journals</source><creator>Haug, F. ; Bienert, M. ; Schleich, W. P. ; Seligman, T. H. ; Raizen, M. G.</creator><creatorcontrib>Haug, F. ; Bienert, M. ; Schleich, W. P. ; Seligman, T. H. ; Raizen, M. G.</creatorcontrib><description>We propose an atom optics experiment to measure the stability of the quantum kicked rotor under perturbations of the Hamiltonian. We avail ourselves of the theory of Loschmidt echoes, i.e., we consider the overlap of a quantum state evolved in a perturbed and an unperturbed potential. Atom interferometry allows us to determine the overlap integral in amplitude and phase. A numerical analysis of the kicked rotor in various regimes shows that the quantum signatures of specific classical properties can be detected experimentally.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.71.043803</identifier><language>eng</language><publisher>United States</publisher><subject>AMPLITUDES ; ATOMIC AND MOLECULAR PHYSICS ; ATOMS ; DISTURBANCES ; HAMILTONIANS ; INTERFEROMETRY ; NUMERICAL ANALYSIS ; OPTICS ; POTENTIALS ; QUANTUM MECHANICS ; STABILITY</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2005-04, Vol.71 (4), Article 043803</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-26e597d97fdfeee532d43789338601f13739782c0d015f591a46380acb4a6f313</citedby><cites>FETCH-LOGICAL-c341t-26e597d97fdfeee532d43789338601f13739782c0d015f591a46380acb4a6f313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,2877,2878,27928,27929</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20653342$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Haug, F.</creatorcontrib><creatorcontrib>Bienert, M.</creatorcontrib><creatorcontrib>Schleich, W. P.</creatorcontrib><creatorcontrib>Seligman, T. H.</creatorcontrib><creatorcontrib>Raizen, M. G.</creatorcontrib><title>Motional stability of the quantum kicked rotor: A fidelity approach</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>We propose an atom optics experiment to measure the stability of the quantum kicked rotor under perturbations of the Hamiltonian. We avail ourselves of the theory of Loschmidt echoes, i.e., we consider the overlap of a quantum state evolved in a perturbed and an unperturbed potential. Atom interferometry allows us to determine the overlap integral in amplitude and phase. A numerical analysis of the kicked rotor in various regimes shows that the quantum signatures of specific classical properties can be detected experimentally.</description><subject>AMPLITUDES</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>ATOMS</subject><subject>DISTURBANCES</subject><subject>HAMILTONIANS</subject><subject>INTERFEROMETRY</subject><subject>NUMERICAL ANALYSIS</subject><subject>OPTICS</subject><subject>POTENTIALS</subject><subject>QUANTUM MECHANICS</subject><subject>STABILITY</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEURYMoWKt_wFXA9dS8vMxk4q4Uv6CiiK5DmkmY2HZSk1Tov7dafZv7FocL9xByCWwCwPD6pd_lV_c1nUiYMIEtwyMyAqZEBQ3nxz9_zSquhDwlZzl_sP2JVo3I7CmWEAezormYRViFsqPR09I7-rk1Q9mu6TLYpetoiiWmGzqlPnTulzObTYrG9ufkxJtVdhd_OSbvd7dvs4dq_nz_OJvOK4sCSsUbVyvZKek775yrkXcCZasQ24aBB5SoZMst6xjUvlZgRLNfYuxCmMYj4JhcHXpjLkFnG4qzvY3D4GzRnDU1ouB7ih8om2LOyXm9SWFt0k4D0z-y9L8sLUEfZOE3NkxdpQ</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Haug, F.</creator><creator>Bienert, M.</creator><creator>Schleich, W. P.</creator><creator>Seligman, T. H.</creator><creator>Raizen, M. G.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20050401</creationdate><title>Motional stability of the quantum kicked rotor: A fidelity approach</title><author>Haug, F. ; Bienert, M. ; Schleich, W. P. ; Seligman, T. H. ; Raizen, M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-26e597d97fdfeee532d43789338601f13739782c0d015f591a46380acb4a6f313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>AMPLITUDES</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>ATOMS</topic><topic>DISTURBANCES</topic><topic>HAMILTONIANS</topic><topic>INTERFEROMETRY</topic><topic>NUMERICAL ANALYSIS</topic><topic>OPTICS</topic><topic>POTENTIALS</topic><topic>QUANTUM MECHANICS</topic><topic>STABILITY</topic><toplevel>online_resources</toplevel><creatorcontrib>Haug, F.</creatorcontrib><creatorcontrib>Bienert, M.</creatorcontrib><creatorcontrib>Schleich, W. P.</creatorcontrib><creatorcontrib>Seligman, T. H.</creatorcontrib><creatorcontrib>Raizen, M. G.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haug, F.</au><au>Bienert, M.</au><au>Schleich, W. P.</au><au>Seligman, T. H.</au><au>Raizen, M. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motional stability of the quantum kicked rotor: A fidelity approach</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>71</volume><issue>4</issue><artnum>043803</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>We propose an atom optics experiment to measure the stability of the quantum kicked rotor under perturbations of the Hamiltonian. We avail ourselves of the theory of Loschmidt echoes, i.e., we consider the overlap of a quantum state evolved in a perturbed and an unperturbed potential. Atom interferometry allows us to determine the overlap integral in amplitude and phase. A numerical analysis of the kicked rotor in various regimes shows that the quantum signatures of specific classical properties can be detected experimentally.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.71.043803</doi></addata></record>
fulltext fulltext
identifier ISSN: 1050-2947
ispartof Physical review. A, Atomic, molecular, and optical physics, 2005-04, Vol.71 (4), Article 043803
issn 1050-2947
1094-1622
language eng
recordid cdi_osti_scitechconnect_20653342
source American Physical Society Journals
subjects AMPLITUDES
ATOMIC AND MOLECULAR PHYSICS
ATOMS
DISTURBANCES
HAMILTONIANS
INTERFEROMETRY
NUMERICAL ANALYSIS
OPTICS
POTENTIALS
QUANTUM MECHANICS
STABILITY
title Motional stability of the quantum kicked rotor: A fidelity approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motional%20stability%20of%20the%20quantum%20kicked%20rotor:%20A%20fidelity%20approach&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Haug,%20F.&rft.date=2005-04-01&rft.volume=71&rft.issue=4&rft.artnum=043803&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.71.043803&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_71_043803%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true