Nonadiabatic geometric quantum computation using a single-loop scenario

A single-loop scenario is proposed to realize nonadiabatic geometric quantum computation. Conventionally, a so-called multiloop approach is used to remove the dynamical phase accumulated in the operation process for geometric quantum gates. More intriguingly, we here illustrate in detail how to use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2005-01, Vol.71 (1), Article 014302
Hauptverfasser: Zhang, Xin-Ding, Zhu, Shi-Liang, Hu, Lian, Wang, Z. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physical review. A, Atomic, molecular, and optical physics
container_volume 71
creator Zhang, Xin-Ding
Zhu, Shi-Liang
Hu, Lian
Wang, Z. D.
description A single-loop scenario is proposed to realize nonadiabatic geometric quantum computation. Conventionally, a so-called multiloop approach is used to remove the dynamical phase accumulated in the operation process for geometric quantum gates. More intriguingly, we here illustrate in detail how to use a special single-loop method to remove the dynamical phase and thus to construct a set of universal quantum gates based on the nonadiabatic geometric phase shift. The present scheme is applicable to NMR systems and may be feasible in other physical systems.
doi_str_mv 10.1103/PhysRevA.71.014302
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20650307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_71_014302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-e1c4713e949d2036743194ae92253aa09339e697049f773aa29c6bf4d6291d6d3</originalsourceid><addsrcrecordid>eNo1kE9LAzEUxIMoWKtfwNOC560vf5r4jqVoKxQV0XNIs9k2spvUTVbot3fL6lxmeG-Yw4-QWwozSoHfv-2P6d39LGaKzoAKDuyMTCigKKlk7PyU51AyFOqSXKX0BYPEA07I6iUGU3mzNdnbYudi63I3pO_ehNy3hY3toc_DM4aiTz7sClOcrHFlE-OhSNYF0_l4TS5q0yR38-dT8vn0-LFcl5vX1fNysSktZyKXjlqhKHcosGLApRKcojAOGZtzYwA5RydRgcBaqeHC0MptLSrJkFay4lNyN-7GlL1O1mdn9zaG4GzWDOQcOKihxcaW7WJKnav1ofOt6Y6agj4B0__AtKJ6BMZ_AXSXX6k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonadiabatic geometric quantum computation using a single-loop scenario</title><source>American Physical Society Journals</source><creator>Zhang, Xin-Ding ; Zhu, Shi-Liang ; Hu, Lian ; Wang, Z. D.</creator><creatorcontrib>Zhang, Xin-Ding ; Zhu, Shi-Liang ; Hu, Lian ; Wang, Z. D.</creatorcontrib><description>A single-loop scenario is proposed to realize nonadiabatic geometric quantum computation. Conventionally, a so-called multiloop approach is used to remove the dynamical phase accumulated in the operation process for geometric quantum gates. More intriguingly, we here illustrate in detail how to use a special single-loop method to remove the dynamical phase and thus to construct a set of universal quantum gates based on the nonadiabatic geometric phase shift. The present scheme is applicable to NMR systems and may be feasible in other physical systems.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.71.014302</identifier><language>eng</language><publisher>United States</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; ENERGY LEVELS ; INFORMATION THEORY ; LOGIC CIRCUITS ; NUCLEAR MAGNETIC RESONANCE ; OPERATION ; PHASE SHIFT ; QUANTUM MECHANICS</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2005-01, Vol.71 (1), Article 014302</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-e1c4713e949d2036743194ae92253aa09339e697049f773aa29c6bf4d6291d6d3</citedby><cites>FETCH-LOGICAL-c324t-e1c4713e949d2036743194ae92253aa09339e697049f773aa29c6bf4d6291d6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20650307$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xin-Ding</creatorcontrib><creatorcontrib>Zhu, Shi-Liang</creatorcontrib><creatorcontrib>Hu, Lian</creatorcontrib><creatorcontrib>Wang, Z. D.</creatorcontrib><title>Nonadiabatic geometric quantum computation using a single-loop scenario</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>A single-loop scenario is proposed to realize nonadiabatic geometric quantum computation. Conventionally, a so-called multiloop approach is used to remove the dynamical phase accumulated in the operation process for geometric quantum gates. More intriguingly, we here illustrate in detail how to use a special single-loop method to remove the dynamical phase and thus to construct a set of universal quantum gates based on the nonadiabatic geometric phase shift. The present scheme is applicable to NMR systems and may be feasible in other physical systems.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>ENERGY LEVELS</subject><subject>INFORMATION THEORY</subject><subject>LOGIC CIRCUITS</subject><subject>NUCLEAR MAGNETIC RESONANCE</subject><subject>OPERATION</subject><subject>PHASE SHIFT</subject><subject>QUANTUM MECHANICS</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo1kE9LAzEUxIMoWKtfwNOC560vf5r4jqVoKxQV0XNIs9k2spvUTVbot3fL6lxmeG-Yw4-QWwozSoHfv-2P6d39LGaKzoAKDuyMTCigKKlk7PyU51AyFOqSXKX0BYPEA07I6iUGU3mzNdnbYudi63I3pO_ehNy3hY3toc_DM4aiTz7sClOcrHFlE-OhSNYF0_l4TS5q0yR38-dT8vn0-LFcl5vX1fNysSktZyKXjlqhKHcosGLApRKcojAOGZtzYwA5RydRgcBaqeHC0MptLSrJkFay4lNyN-7GlL1O1mdn9zaG4GzWDOQcOKihxcaW7WJKnav1ofOt6Y6agj4B0__AtKJ6BMZ_AXSXX6k</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Zhang, Xin-Ding</creator><creator>Zhu, Shi-Liang</creator><creator>Hu, Lian</creator><creator>Wang, Z. D.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>200501</creationdate><title>Nonadiabatic geometric quantum computation using a single-loop scenario</title><author>Zhang, Xin-Ding ; Zhu, Shi-Liang ; Hu, Lian ; Wang, Z. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-e1c4713e949d2036743194ae92253aa09339e697049f773aa29c6bf4d6291d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>ENERGY LEVELS</topic><topic>INFORMATION THEORY</topic><topic>LOGIC CIRCUITS</topic><topic>NUCLEAR MAGNETIC RESONANCE</topic><topic>OPERATION</topic><topic>PHASE SHIFT</topic><topic>QUANTUM MECHANICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xin-Ding</creatorcontrib><creatorcontrib>Zhu, Shi-Liang</creatorcontrib><creatorcontrib>Hu, Lian</creatorcontrib><creatorcontrib>Wang, Z. D.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xin-Ding</au><au>Zhu, Shi-Liang</au><au>Hu, Lian</au><au>Wang, Z. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonadiabatic geometric quantum computation using a single-loop scenario</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2005-01</date><risdate>2005</risdate><volume>71</volume><issue>1</issue><artnum>014302</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>A single-loop scenario is proposed to realize nonadiabatic geometric quantum computation. Conventionally, a so-called multiloop approach is used to remove the dynamical phase accumulated in the operation process for geometric quantum gates. More intriguingly, we here illustrate in detail how to use a special single-loop method to remove the dynamical phase and thus to construct a set of universal quantum gates based on the nonadiabatic geometric phase shift. The present scheme is applicable to NMR systems and may be feasible in other physical systems.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.71.014302</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-2947
ispartof Physical review. A, Atomic, molecular, and optical physics, 2005-01, Vol.71 (1), Article 014302
issn 1050-2947
1094-1622
language eng
recordid cdi_osti_scitechconnect_20650307
source American Physical Society Journals
subjects ATOMIC AND MOLECULAR PHYSICS
ENERGY LEVELS
INFORMATION THEORY
LOGIC CIRCUITS
NUCLEAR MAGNETIC RESONANCE
OPERATION
PHASE SHIFT
QUANTUM MECHANICS
title Nonadiabatic geometric quantum computation using a single-loop scenario
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonadiabatic%20geometric%20quantum%20computation%20using%20a%20single-loop%20scenario&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Zhang,%20Xin-Ding&rft.date=2005-01&rft.volume=71&rft.issue=1&rft.artnum=014302&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.71.014302&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_71_014302%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true