Nonadiabatic geometric quantum computation using a single-loop scenario
A single-loop scenario is proposed to realize nonadiabatic geometric quantum computation. Conventionally, a so-called multiloop approach is used to remove the dynamical phase accumulated in the operation process for geometric quantum gates. More intriguingly, we here illustrate in detail how to use...
Gespeichert in:
Veröffentlicht in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2005-01, Vol.71 (1), Article 014302 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physical review. A, Atomic, molecular, and optical physics |
container_volume | 71 |
creator | Zhang, Xin-Ding Zhu, Shi-Liang Hu, Lian Wang, Z. D. |
description | A single-loop scenario is proposed to realize nonadiabatic geometric quantum computation. Conventionally, a so-called multiloop approach is used to remove the dynamical phase accumulated in the operation process for geometric quantum gates. More intriguingly, we here illustrate in detail how to use a special single-loop method to remove the dynamical phase and thus to construct a set of universal quantum gates based on the nonadiabatic geometric phase shift. The present scheme is applicable to NMR systems and may be feasible in other physical systems. |
doi_str_mv | 10.1103/PhysRevA.71.014302 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20650307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_71_014302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-e1c4713e949d2036743194ae92253aa09339e697049f773aa29c6bf4d6291d6d3</originalsourceid><addsrcrecordid>eNo1kE9LAzEUxIMoWKtfwNOC560vf5r4jqVoKxQV0XNIs9k2spvUTVbot3fL6lxmeG-Yw4-QWwozSoHfv-2P6d39LGaKzoAKDuyMTCigKKlk7PyU51AyFOqSXKX0BYPEA07I6iUGU3mzNdnbYudi63I3pO_ehNy3hY3toc_DM4aiTz7sClOcrHFlE-OhSNYF0_l4TS5q0yR38-dT8vn0-LFcl5vX1fNysSktZyKXjlqhKHcosGLApRKcojAOGZtzYwA5RydRgcBaqeHC0MptLSrJkFay4lNyN-7GlL1O1mdn9zaG4GzWDOQcOKihxcaW7WJKnav1ofOt6Y6agj4B0__AtKJ6BMZ_AXSXX6k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonadiabatic geometric quantum computation using a single-loop scenario</title><source>American Physical Society Journals</source><creator>Zhang, Xin-Ding ; Zhu, Shi-Liang ; Hu, Lian ; Wang, Z. D.</creator><creatorcontrib>Zhang, Xin-Ding ; Zhu, Shi-Liang ; Hu, Lian ; Wang, Z. D.</creatorcontrib><description>A single-loop scenario is proposed to realize nonadiabatic geometric quantum computation. Conventionally, a so-called multiloop approach is used to remove the dynamical phase accumulated in the operation process for geometric quantum gates. More intriguingly, we here illustrate in detail how to use a special single-loop method to remove the dynamical phase and thus to construct a set of universal quantum gates based on the nonadiabatic geometric phase shift. The present scheme is applicable to NMR systems and may be feasible in other physical systems.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.71.014302</identifier><language>eng</language><publisher>United States</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; ENERGY LEVELS ; INFORMATION THEORY ; LOGIC CIRCUITS ; NUCLEAR MAGNETIC RESONANCE ; OPERATION ; PHASE SHIFT ; QUANTUM MECHANICS</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2005-01, Vol.71 (1), Article 014302</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-e1c4713e949d2036743194ae92253aa09339e697049f773aa29c6bf4d6291d6d3</citedby><cites>FETCH-LOGICAL-c324t-e1c4713e949d2036743194ae92253aa09339e697049f773aa29c6bf4d6291d6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20650307$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xin-Ding</creatorcontrib><creatorcontrib>Zhu, Shi-Liang</creatorcontrib><creatorcontrib>Hu, Lian</creatorcontrib><creatorcontrib>Wang, Z. D.</creatorcontrib><title>Nonadiabatic geometric quantum computation using a single-loop scenario</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>A single-loop scenario is proposed to realize nonadiabatic geometric quantum computation. Conventionally, a so-called multiloop approach is used to remove the dynamical phase accumulated in the operation process for geometric quantum gates. More intriguingly, we here illustrate in detail how to use a special single-loop method to remove the dynamical phase and thus to construct a set of universal quantum gates based on the nonadiabatic geometric phase shift. The present scheme is applicable to NMR systems and may be feasible in other physical systems.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>ENERGY LEVELS</subject><subject>INFORMATION THEORY</subject><subject>LOGIC CIRCUITS</subject><subject>NUCLEAR MAGNETIC RESONANCE</subject><subject>OPERATION</subject><subject>PHASE SHIFT</subject><subject>QUANTUM MECHANICS</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo1kE9LAzEUxIMoWKtfwNOC560vf5r4jqVoKxQV0XNIs9k2spvUTVbot3fL6lxmeG-Yw4-QWwozSoHfv-2P6d39LGaKzoAKDuyMTCigKKlk7PyU51AyFOqSXKX0BYPEA07I6iUGU3mzNdnbYudi63I3pO_ehNy3hY3toc_DM4aiTz7sClOcrHFlE-OhSNYF0_l4TS5q0yR38-dT8vn0-LFcl5vX1fNysSktZyKXjlqhKHcosGLApRKcojAOGZtzYwA5RydRgcBaqeHC0MptLSrJkFay4lNyN-7GlL1O1mdn9zaG4GzWDOQcOKihxcaW7WJKnav1ofOt6Y6agj4B0__AtKJ6BMZ_AXSXX6k</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Zhang, Xin-Ding</creator><creator>Zhu, Shi-Liang</creator><creator>Hu, Lian</creator><creator>Wang, Z. D.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>200501</creationdate><title>Nonadiabatic geometric quantum computation using a single-loop scenario</title><author>Zhang, Xin-Ding ; Zhu, Shi-Liang ; Hu, Lian ; Wang, Z. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-e1c4713e949d2036743194ae92253aa09339e697049f773aa29c6bf4d6291d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>ENERGY LEVELS</topic><topic>INFORMATION THEORY</topic><topic>LOGIC CIRCUITS</topic><topic>NUCLEAR MAGNETIC RESONANCE</topic><topic>OPERATION</topic><topic>PHASE SHIFT</topic><topic>QUANTUM MECHANICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xin-Ding</creatorcontrib><creatorcontrib>Zhu, Shi-Liang</creatorcontrib><creatorcontrib>Hu, Lian</creatorcontrib><creatorcontrib>Wang, Z. D.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xin-Ding</au><au>Zhu, Shi-Liang</au><au>Hu, Lian</au><au>Wang, Z. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonadiabatic geometric quantum computation using a single-loop scenario</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2005-01</date><risdate>2005</risdate><volume>71</volume><issue>1</issue><artnum>014302</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>A single-loop scenario is proposed to realize nonadiabatic geometric quantum computation. Conventionally, a so-called multiloop approach is used to remove the dynamical phase accumulated in the operation process for geometric quantum gates. More intriguingly, we here illustrate in detail how to use a special single-loop method to remove the dynamical phase and thus to construct a set of universal quantum gates based on the nonadiabatic geometric phase shift. The present scheme is applicable to NMR systems and may be feasible in other physical systems.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.71.014302</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-2947 |
ispartof | Physical review. A, Atomic, molecular, and optical physics, 2005-01, Vol.71 (1), Article 014302 |
issn | 1050-2947 1094-1622 |
language | eng |
recordid | cdi_osti_scitechconnect_20650307 |
source | American Physical Society Journals |
subjects | ATOMIC AND MOLECULAR PHYSICS ENERGY LEVELS INFORMATION THEORY LOGIC CIRCUITS NUCLEAR MAGNETIC RESONANCE OPERATION PHASE SHIFT QUANTUM MECHANICS |
title | Nonadiabatic geometric quantum computation using a single-loop scenario |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonadiabatic%20geometric%20quantum%20computation%20using%20a%20single-loop%20scenario&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Zhang,%20Xin-Ding&rft.date=2005-01&rft.volume=71&rft.issue=1&rft.artnum=014302&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.71.014302&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_71_014302%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |