Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states
We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The ca...
Gespeichert in:
Veröffentlicht in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2004-03, Vol.69 (3), Article 033812 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physical review. A, Atomic, molecular, and optical physics |
container_volume | 69 |
creator | Dell’Anno, Fabio Siena, Silvio De Illuminati, Fabrizio |
description | We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization. |
doi_str_mv | 10.1103/PhysRevA.69.033812 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20640901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_69_033812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-8411ef418b6c45e237fa6f35ada8a370f6cd4a0e498f627565ed4bc7fba887843</originalsourceid><addsrcrecordid>eNo1kEtLAzEYRYMoWKt_wFXA9Yx5TSazLMVHoaD42AkhzXxhRmaSNskI9ddbqd7NvYvDXRyErikpKSX89rnbpxf4WpSyKQnnirITNKOkEQWVjJ3-7ooUrBH1ObpI6ZMcIlQzQx-vOU42TxFwcHichtxvu5CDx7vJ-DyNOGxzb1OJVyVeGh98b82AXYijGfo0YuNb3IUxtHsPOO0mgG9occomQ7pEZ84MCa7-eo7e7-_elo_F-ulhtVysC8sVz4USlIITVG2kFRUwXjsjHa9Ma5ThNXHStsIQEI1yktWVrKAVG1u7jVGqVoLP0c3xN6Tc62T7DLazwXuwWTMiBWkIPVDsSNkYUorg9Db2o4l7TYn-taj_LWrZ6KNF_gOo0WjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states</title><source>American Physical Society Journals</source><creator>Dell’Anno, Fabio ; Siena, Silvio De ; Illuminati, Fabrizio</creator><creatorcontrib>Dell’Anno, Fabio ; Siena, Silvio De ; Illuminati, Fabrizio</creatorcontrib><description>We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.69.033812</identifier><language>eng</language><publisher>United States</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; CANONICAL TRANSFORMATIONS ; CONVERSION ; ELECTROMAGNETIC FIELDS ; EVOLUTION ; HAMILTONIANS ; MIXING ; MULTI-PHOTON PROCESSES ; NONLINEAR OPTICS ; NONLINEAR PROBLEMS ; OSCILLATORS ; QUADRATURES ; TUNING ; WAVELENGTHS ; YIELDS</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2004-03, Vol.69 (3), Article 033812</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-8411ef418b6c45e237fa6f35ada8a370f6cd4a0e498f627565ed4bc7fba887843</citedby><cites>FETCH-LOGICAL-c383t-8411ef418b6c45e237fa6f35ada8a370f6cd4a0e498f627565ed4bc7fba887843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,2865,2866,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20640901$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dell’Anno, Fabio</creatorcontrib><creatorcontrib>Siena, Silvio De</creatorcontrib><creatorcontrib>Illuminati, Fabrizio</creatorcontrib><title>Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>CANONICAL TRANSFORMATIONS</subject><subject>CONVERSION</subject><subject>ELECTROMAGNETIC FIELDS</subject><subject>EVOLUTION</subject><subject>HAMILTONIANS</subject><subject>MIXING</subject><subject>MULTI-PHOTON PROCESSES</subject><subject>NONLINEAR OPTICS</subject><subject>NONLINEAR PROBLEMS</subject><subject>OSCILLATORS</subject><subject>QUADRATURES</subject><subject>TUNING</subject><subject>WAVELENGTHS</subject><subject>YIELDS</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLAzEYRYMoWKt_wFXA9Yx5TSazLMVHoaD42AkhzXxhRmaSNskI9ddbqd7NvYvDXRyErikpKSX89rnbpxf4WpSyKQnnirITNKOkEQWVjJ3-7ooUrBH1ObpI6ZMcIlQzQx-vOU42TxFwcHichtxvu5CDx7vJ-DyNOGxzb1OJVyVeGh98b82AXYijGfo0YuNb3IUxtHsPOO0mgG9occomQ7pEZ84MCa7-eo7e7-_elo_F-ulhtVysC8sVz4USlIITVG2kFRUwXjsjHa9Ma5ThNXHStsIQEI1yktWVrKAVG1u7jVGqVoLP0c3xN6Tc62T7DLazwXuwWTMiBWkIPVDsSNkYUorg9Db2o4l7TYn-taj_LWrZ6KNF_gOo0WjA</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Dell’Anno, Fabio</creator><creator>Siena, Silvio De</creator><creator>Illuminati, Fabrizio</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20040301</creationdate><title>Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states</title><author>Dell’Anno, Fabio ; Siena, Silvio De ; Illuminati, Fabrizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-8411ef418b6c45e237fa6f35ada8a370f6cd4a0e498f627565ed4bc7fba887843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>CANONICAL TRANSFORMATIONS</topic><topic>CONVERSION</topic><topic>ELECTROMAGNETIC FIELDS</topic><topic>EVOLUTION</topic><topic>HAMILTONIANS</topic><topic>MIXING</topic><topic>MULTI-PHOTON PROCESSES</topic><topic>NONLINEAR OPTICS</topic><topic>NONLINEAR PROBLEMS</topic><topic>OSCILLATORS</topic><topic>QUADRATURES</topic><topic>TUNING</topic><topic>WAVELENGTHS</topic><topic>YIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dell’Anno, Fabio</creatorcontrib><creatorcontrib>Siena, Silvio De</creatorcontrib><creatorcontrib>Illuminati, Fabrizio</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dell’Anno, Fabio</au><au>Siena, Silvio De</au><au>Illuminati, Fabrizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>69</volume><issue>3</issue><artnum>033812</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.69.033812</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-2947 |
ispartof | Physical review. A, Atomic, molecular, and optical physics, 2004-03, Vol.69 (3), Article 033812 |
issn | 1050-2947 1094-1622 |
language | eng |
recordid | cdi_osti_scitechconnect_20640901 |
source | American Physical Society Journals |
subjects | ATOMIC AND MOLECULAR PHYSICS CANONICAL TRANSFORMATIONS CONVERSION ELECTROMAGNETIC FIELDS EVOLUTION HAMILTONIANS MIXING MULTI-PHOTON PROCESSES NONLINEAR OPTICS NONLINEAR PROBLEMS OSCILLATORS QUADRATURES TUNING WAVELENGTHS YIELDS |
title | Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20multiphoton%20quantum%20optics.%20I.%20Canonical%20formalism%20and%20homodyne%20squeezed%20states&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Dell%E2%80%99Anno,%20Fabio&rft.date=2004-03-01&rft.volume=69&rft.issue=3&rft.artnum=033812&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.69.033812&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_69_033812%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |