Dopant effect on grain boundary diffusivity in polycrystalline alumina
The densification behavior during sintering in 0.1 mol% MgO-, MnO-, SrO-, LuO 1.5-, TiO 2-, ZrO 2- or PtO 2-doped Al 2O 3 was investigated at the sintering temperature of 1300–1500 °C in order to systematically examine the dopant effect on grain boundary diffusivity in Al 2O 3. The densification beh...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2005-01, Vol.53 (2), p.433-440 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | 2 |
container_start_page | 433 |
container_title | Acta materialia |
container_volume | 53 |
creator | Yoshida, Hidehiro Hashimoto, Shinsuke Yamamoto, Takahisa |
description | The densification behavior during sintering in 0.1 mol% MgO-, MnO-, SrO-, LuO
1.5-, TiO
2-, ZrO
2- or PtO
2-doped Al
2O
3 was investigated at the sintering temperature of 1300–1500 °C in order to systematically examine the dopant effect on grain boundary diffusivity in Al
2O
3. The densification behavior was monitored from room temperature to the sintering temperature using a laser-scanning system, which allows in situ, non-contact measuring of the specimen’s dimensions. The grain boundary diffusivity in Al
2O
3 is sensitively affected by the dopant cation which segregates at the grain boundaries. The dopant effect on the grain boundary diffusivity is related to the ionicity in Al
2O
3; a lower energy level of the dopant element’s outer shells provides a higher value of diffusivity in the divalent or tetravalent cation-doped Al
2O
3. A first-principle molecular orbital calculation revealed that the grain boundary diffusivity correlates well with the net charge of the Al and O ions in the cation-doped Al
2O
3. The ionic bond strength in the vicinity of the grain boundaries dominates the high-temperature grain boundary diffusion in polycrystalline Al
2O
3. |
doi_str_mv | 10.1016/j.actamat.2004.09.038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20637126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645404005919</els_id><sourcerecordid>28501596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-286ee27f256c29812dbe4c474596fd2498fc8ce603dff9038fefc062c8ae6bae3</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhgexYG39CcKA6N2MycnHJFci1dpCwZv2OmQzJ5plNlmTTGH_vVl2wct6lUN4zsf7vl33npKREio_b0frqt3ZOgIhfCR6JEy96i6pmtgAXLDXrWZCD5IL_qZ7W8qWEAoTJ5fd7be0t7H26D262qfY_8o2xH6T1jjbfOjn4P1awnOoh77979NycPlQql2WELG3y7oL0V53F94uBd-d36vu6fb7483d8PDzx_3N14fBCZB1ACURYfIgpAOtKMwb5I5PXGjpZ-BaeaccSsJm73VT4dE7IsEpi3JjkV11H05zU6nBFBcqut8uxdiON0AkmyjIRn06Ufuc_qxYqtmF4nBZbMS0FgMaQEpF_wOkGhhhL4NKENpENFCcQJdTKRm92eewa0YaSswxLbM157TMMS1DtGk6W9_H8wJbnF18ttGF8q9ZNkYKaNyXE4fN5eeA-WgCRodzyEcP5hRe2PQXX5WtXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28501596</pqid></control><display><type>article</type><title>Dopant effect on grain boundary diffusivity in polycrystalline alumina</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yoshida, Hidehiro ; Hashimoto, Shinsuke ; Yamamoto, Takahisa</creator><creatorcontrib>Yoshida, Hidehiro ; Hashimoto, Shinsuke ; Yamamoto, Takahisa</creatorcontrib><description>The densification behavior during sintering in 0.1 mol% MgO-, MnO-, SrO-, LuO
1.5-, TiO
2-, ZrO
2- or PtO
2-doped Al
2O
3 was investigated at the sintering temperature of 1300–1500 °C in order to systematically examine the dopant effect on grain boundary diffusivity in Al
2O
3. The densification behavior was monitored from room temperature to the sintering temperature using a laser-scanning system, which allows in situ, non-contact measuring of the specimen’s dimensions. The grain boundary diffusivity in Al
2O
3 is sensitively affected by the dopant cation which segregates at the grain boundaries. The dopant effect on the grain boundary diffusivity is related to the ionicity in Al
2O
3; a lower energy level of the dopant element’s outer shells provides a higher value of diffusivity in the divalent or tetravalent cation-doped Al
2O
3. A first-principle molecular orbital calculation revealed that the grain boundary diffusivity correlates well with the net charge of the Al and O ions in the cation-doped Al
2O
3. The ionic bond strength in the vicinity of the grain boundaries dominates the high-temperature grain boundary diffusion in polycrystalline Al
2O
3.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2004.09.038</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alumina ; ALUMINIUM OXIDES ; Applied sciences ; BOUND STATE ; CATIONS ; Chemical bonding state ; Cross-disciplinary physics: materials science; rheology ; DIFFUSION ; DOPED MATERIALS ; ENERGY LEVELS ; Exact sciences and technology ; GRAIN BOUNDARIES ; Grain boundary diffusion ; LUTETIUM OXIDES ; MAGNESIUM OXIDES ; MANGANESE OXIDES ; MATERIALS SCIENCE ; Metals. Metallurgy ; Molecular orbital calculation ; OXYGEN IONS ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; PLATINUM OXIDES ; POLYCRYSTALS ; Powder metallurgy. Composite materials ; Production techniques ; Sintered metals and alloys. Pseudo alloys. Cermets ; SINTERING ; Solidification ; STRONTIUM OXIDES ; TEMPERATURE RANGE 0273-0400 K ; TITANIUM OXIDES ; ZIRCONIUM OXIDES</subject><ispartof>Acta materialia, 2005-01, Vol.53 (2), p.433-440</ispartof><rights>2004 Acta Materialia Inc.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-286ee27f256c29812dbe4c474596fd2498fc8ce603dff9038fefc062c8ae6bae3</citedby><cites>FETCH-LOGICAL-c526t-286ee27f256c29812dbe4c474596fd2498fc8ce603dff9038fefc062c8ae6bae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2004.09.038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16383652$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20637126$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, Hidehiro</creatorcontrib><creatorcontrib>Hashimoto, Shinsuke</creatorcontrib><creatorcontrib>Yamamoto, Takahisa</creatorcontrib><title>Dopant effect on grain boundary diffusivity in polycrystalline alumina</title><title>Acta materialia</title><description>The densification behavior during sintering in 0.1 mol% MgO-, MnO-, SrO-, LuO
1.5-, TiO
2-, ZrO
2- or PtO
2-doped Al
2O
3 was investigated at the sintering temperature of 1300–1500 °C in order to systematically examine the dopant effect on grain boundary diffusivity in Al
2O
3. The densification behavior was monitored from room temperature to the sintering temperature using a laser-scanning system, which allows in situ, non-contact measuring of the specimen’s dimensions. The grain boundary diffusivity in Al
2O
3 is sensitively affected by the dopant cation which segregates at the grain boundaries. The dopant effect on the grain boundary diffusivity is related to the ionicity in Al
2O
3; a lower energy level of the dopant element’s outer shells provides a higher value of diffusivity in the divalent or tetravalent cation-doped Al
2O
3. A first-principle molecular orbital calculation revealed that the grain boundary diffusivity correlates well with the net charge of the Al and O ions in the cation-doped Al
2O
3. The ionic bond strength in the vicinity of the grain boundaries dominates the high-temperature grain boundary diffusion in polycrystalline Al
2O
3.</description><subject>Alumina</subject><subject>ALUMINIUM OXIDES</subject><subject>Applied sciences</subject><subject>BOUND STATE</subject><subject>CATIONS</subject><subject>Chemical bonding state</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DIFFUSION</subject><subject>DOPED MATERIALS</subject><subject>ENERGY LEVELS</subject><subject>Exact sciences and technology</subject><subject>GRAIN BOUNDARIES</subject><subject>Grain boundary diffusion</subject><subject>LUTETIUM OXIDES</subject><subject>MAGNESIUM OXIDES</subject><subject>MANGANESE OXIDES</subject><subject>MATERIALS SCIENCE</subject><subject>Metals. Metallurgy</subject><subject>Molecular orbital calculation</subject><subject>OXYGEN IONS</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>PLATINUM OXIDES</subject><subject>POLYCRYSTALS</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>Sintered metals and alloys. Pseudo alloys. Cermets</subject><subject>SINTERING</subject><subject>Solidification</subject><subject>STRONTIUM OXIDES</subject><subject>TEMPERATURE RANGE 0273-0400 K</subject><subject>TITANIUM OXIDES</subject><subject>ZIRCONIUM OXIDES</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkV1rFDEUhgexYG39CcKA6N2MycnHJFci1dpCwZv2OmQzJ5plNlmTTGH_vVl2wct6lUN4zsf7vl33npKREio_b0frqt3ZOgIhfCR6JEy96i6pmtgAXLDXrWZCD5IL_qZ7W8qWEAoTJ5fd7be0t7H26D262qfY_8o2xH6T1jjbfOjn4P1awnOoh77979NycPlQql2WELG3y7oL0V53F94uBd-d36vu6fb7483d8PDzx_3N14fBCZB1ACURYfIgpAOtKMwb5I5PXGjpZ-BaeaccSsJm73VT4dE7IsEpi3JjkV11H05zU6nBFBcqut8uxdiON0AkmyjIRn06Ufuc_qxYqtmF4nBZbMS0FgMaQEpF_wOkGhhhL4NKENpENFCcQJdTKRm92eewa0YaSswxLbM157TMMS1DtGk6W9_H8wJbnF18ttGF8q9ZNkYKaNyXE4fN5eeA-WgCRodzyEcP5hRe2PQXX5WtXQ</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Yoshida, Hidehiro</creator><creator>Hashimoto, Shinsuke</creator><creator>Yamamoto, Takahisa</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope><scope>7QF</scope><scope>OTOTI</scope></search><sort><creationdate>20050101</creationdate><title>Dopant effect on grain boundary diffusivity in polycrystalline alumina</title><author>Yoshida, Hidehiro ; Hashimoto, Shinsuke ; Yamamoto, Takahisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-286ee27f256c29812dbe4c474596fd2498fc8ce603dff9038fefc062c8ae6bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alumina</topic><topic>ALUMINIUM OXIDES</topic><topic>Applied sciences</topic><topic>BOUND STATE</topic><topic>CATIONS</topic><topic>Chemical bonding state</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DIFFUSION</topic><topic>DOPED MATERIALS</topic><topic>ENERGY LEVELS</topic><topic>Exact sciences and technology</topic><topic>GRAIN BOUNDARIES</topic><topic>Grain boundary diffusion</topic><topic>LUTETIUM OXIDES</topic><topic>MAGNESIUM OXIDES</topic><topic>MANGANESE OXIDES</topic><topic>MATERIALS SCIENCE</topic><topic>Metals. Metallurgy</topic><topic>Molecular orbital calculation</topic><topic>OXYGEN IONS</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>PLATINUM OXIDES</topic><topic>POLYCRYSTALS</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>Sintered metals and alloys. Pseudo alloys. Cermets</topic><topic>SINTERING</topic><topic>Solidification</topic><topic>STRONTIUM OXIDES</topic><topic>TEMPERATURE RANGE 0273-0400 K</topic><topic>TITANIUM OXIDES</topic><topic>ZIRCONIUM OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Hidehiro</creatorcontrib><creatorcontrib>Hashimoto, Shinsuke</creatorcontrib><creatorcontrib>Yamamoto, Takahisa</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aluminium Industry Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Hidehiro</au><au>Hashimoto, Shinsuke</au><au>Yamamoto, Takahisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopant effect on grain boundary diffusivity in polycrystalline alumina</atitle><jtitle>Acta materialia</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>53</volume><issue>2</issue><spage>433</spage><epage>440</epage><pages>433-440</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The densification behavior during sintering in 0.1 mol% MgO-, MnO-, SrO-, LuO
1.5-, TiO
2-, ZrO
2- or PtO
2-doped Al
2O
3 was investigated at the sintering temperature of 1300–1500 °C in order to systematically examine the dopant effect on grain boundary diffusivity in Al
2O
3. The densification behavior was monitored from room temperature to the sintering temperature using a laser-scanning system, which allows in situ, non-contact measuring of the specimen’s dimensions. The grain boundary diffusivity in Al
2O
3 is sensitively affected by the dopant cation which segregates at the grain boundaries. The dopant effect on the grain boundary diffusivity is related to the ionicity in Al
2O
3; a lower energy level of the dopant element’s outer shells provides a higher value of diffusivity in the divalent or tetravalent cation-doped Al
2O
3. A first-principle molecular orbital calculation revealed that the grain boundary diffusivity correlates well with the net charge of the Al and O ions in the cation-doped Al
2O
3. The ionic bond strength in the vicinity of the grain boundaries dominates the high-temperature grain boundary diffusion in polycrystalline Al
2O
3.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2004.09.038</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2005-01, Vol.53 (2), p.433-440 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_osti_scitechconnect_20637126 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Alumina ALUMINIUM OXIDES Applied sciences BOUND STATE CATIONS Chemical bonding state Cross-disciplinary physics: materials science rheology DIFFUSION DOPED MATERIALS ENERGY LEVELS Exact sciences and technology GRAIN BOUNDARIES Grain boundary diffusion LUTETIUM OXIDES MAGNESIUM OXIDES MANGANESE OXIDES MATERIALS SCIENCE Metals. Metallurgy Molecular orbital calculation OXYGEN IONS Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics PLATINUM OXIDES POLYCRYSTALS Powder metallurgy. Composite materials Production techniques Sintered metals and alloys. Pseudo alloys. Cermets SINTERING Solidification STRONTIUM OXIDES TEMPERATURE RANGE 0273-0400 K TITANIUM OXIDES ZIRCONIUM OXIDES |
title | Dopant effect on grain boundary diffusivity in polycrystalline alumina |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopant%20effect%20on%20grain%20boundary%20diffusivity%20in%20polycrystalline%20alumina&rft.jtitle=Acta%20materialia&rft.au=Yoshida,%20Hidehiro&rft.date=2005-01-01&rft.volume=53&rft.issue=2&rft.spage=433&rft.epage=440&rft.pages=433-440&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2004.09.038&rft_dat=%3Cproquest_osti_%3E28501596%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28501596&rft_id=info:pmid/&rft_els_id=S1359645404005919&rfr_iscdi=true |