Dopant effect on grain boundary diffusivity in polycrystalline alumina

The densification behavior during sintering in 0.1 mol% MgO-, MnO-, SrO-, LuO 1.5-, TiO 2-, ZrO 2- or PtO 2-doped Al 2O 3 was investigated at the sintering temperature of 1300–1500 °C in order to systematically examine the dopant effect on grain boundary diffusivity in Al 2O 3. The densification beh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2005-01, Vol.53 (2), p.433-440
Hauptverfasser: Yoshida, Hidehiro, Hashimoto, Shinsuke, Yamamoto, Takahisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 2
container_start_page 433
container_title Acta materialia
container_volume 53
creator Yoshida, Hidehiro
Hashimoto, Shinsuke
Yamamoto, Takahisa
description The densification behavior during sintering in 0.1 mol% MgO-, MnO-, SrO-, LuO 1.5-, TiO 2-, ZrO 2- or PtO 2-doped Al 2O 3 was investigated at the sintering temperature of 1300–1500 °C in order to systematically examine the dopant effect on grain boundary diffusivity in Al 2O 3. The densification behavior was monitored from room temperature to the sintering temperature using a laser-scanning system, which allows in situ, non-contact measuring of the specimen’s dimensions. The grain boundary diffusivity in Al 2O 3 is sensitively affected by the dopant cation which segregates at the grain boundaries. The dopant effect on the grain boundary diffusivity is related to the ionicity in Al 2O 3; a lower energy level of the dopant element’s outer shells provides a higher value of diffusivity in the divalent or tetravalent cation-doped Al 2O 3. A first-principle molecular orbital calculation revealed that the grain boundary diffusivity correlates well with the net charge of the Al and O ions in the cation-doped Al 2O 3. The ionic bond strength in the vicinity of the grain boundaries dominates the high-temperature grain boundary diffusion in polycrystalline Al 2O 3.
doi_str_mv 10.1016/j.actamat.2004.09.038
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20637126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645404005919</els_id><sourcerecordid>28501596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-286ee27f256c29812dbe4c474596fd2498fc8ce603dff9038fefc062c8ae6bae3</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhgexYG39CcKA6N2MycnHJFci1dpCwZv2OmQzJ5plNlmTTGH_vVl2wct6lUN4zsf7vl33npKREio_b0frqt3ZOgIhfCR6JEy96i6pmtgAXLDXrWZCD5IL_qZ7W8qWEAoTJ5fd7be0t7H26D262qfY_8o2xH6T1jjbfOjn4P1awnOoh77979NycPlQql2WELG3y7oL0V53F94uBd-d36vu6fb7483d8PDzx_3N14fBCZB1ACURYfIgpAOtKMwb5I5PXGjpZ-BaeaccSsJm73VT4dE7IsEpi3JjkV11H05zU6nBFBcqut8uxdiON0AkmyjIRn06Ufuc_qxYqtmF4nBZbMS0FgMaQEpF_wOkGhhhL4NKENpENFCcQJdTKRm92eewa0YaSswxLbM157TMMS1DtGk6W9_H8wJbnF18ttGF8q9ZNkYKaNyXE4fN5eeA-WgCRodzyEcP5hRe2PQXX5WtXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28501596</pqid></control><display><type>article</type><title>Dopant effect on grain boundary diffusivity in polycrystalline alumina</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yoshida, Hidehiro ; Hashimoto, Shinsuke ; Yamamoto, Takahisa</creator><creatorcontrib>Yoshida, Hidehiro ; Hashimoto, Shinsuke ; Yamamoto, Takahisa</creatorcontrib><description>The densification behavior during sintering in 0.1 mol% MgO-, MnO-, SrO-, LuO 1.5-, TiO 2-, ZrO 2- or PtO 2-doped Al 2O 3 was investigated at the sintering temperature of 1300–1500 °C in order to systematically examine the dopant effect on grain boundary diffusivity in Al 2O 3. The densification behavior was monitored from room temperature to the sintering temperature using a laser-scanning system, which allows in situ, non-contact measuring of the specimen’s dimensions. The grain boundary diffusivity in Al 2O 3 is sensitively affected by the dopant cation which segregates at the grain boundaries. The dopant effect on the grain boundary diffusivity is related to the ionicity in Al 2O 3; a lower energy level of the dopant element’s outer shells provides a higher value of diffusivity in the divalent or tetravalent cation-doped Al 2O 3. A first-principle molecular orbital calculation revealed that the grain boundary diffusivity correlates well with the net charge of the Al and O ions in the cation-doped Al 2O 3. The ionic bond strength in the vicinity of the grain boundaries dominates the high-temperature grain boundary diffusion in polycrystalline Al 2O 3.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2004.09.038</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alumina ; ALUMINIUM OXIDES ; Applied sciences ; BOUND STATE ; CATIONS ; Chemical bonding state ; Cross-disciplinary physics: materials science; rheology ; DIFFUSION ; DOPED MATERIALS ; ENERGY LEVELS ; Exact sciences and technology ; GRAIN BOUNDARIES ; Grain boundary diffusion ; LUTETIUM OXIDES ; MAGNESIUM OXIDES ; MANGANESE OXIDES ; MATERIALS SCIENCE ; Metals. Metallurgy ; Molecular orbital calculation ; OXYGEN IONS ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; PLATINUM OXIDES ; POLYCRYSTALS ; Powder metallurgy. Composite materials ; Production techniques ; Sintered metals and alloys. Pseudo alloys. Cermets ; SINTERING ; Solidification ; STRONTIUM OXIDES ; TEMPERATURE RANGE 0273-0400 K ; TITANIUM OXIDES ; ZIRCONIUM OXIDES</subject><ispartof>Acta materialia, 2005-01, Vol.53 (2), p.433-440</ispartof><rights>2004 Acta Materialia Inc.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-286ee27f256c29812dbe4c474596fd2498fc8ce603dff9038fefc062c8ae6bae3</citedby><cites>FETCH-LOGICAL-c526t-286ee27f256c29812dbe4c474596fd2498fc8ce603dff9038fefc062c8ae6bae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2004.09.038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16383652$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20637126$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, Hidehiro</creatorcontrib><creatorcontrib>Hashimoto, Shinsuke</creatorcontrib><creatorcontrib>Yamamoto, Takahisa</creatorcontrib><title>Dopant effect on grain boundary diffusivity in polycrystalline alumina</title><title>Acta materialia</title><description>The densification behavior during sintering in 0.1 mol% MgO-, MnO-, SrO-, LuO 1.5-, TiO 2-, ZrO 2- or PtO 2-doped Al 2O 3 was investigated at the sintering temperature of 1300–1500 °C in order to systematically examine the dopant effect on grain boundary diffusivity in Al 2O 3. The densification behavior was monitored from room temperature to the sintering temperature using a laser-scanning system, which allows in situ, non-contact measuring of the specimen’s dimensions. The grain boundary diffusivity in Al 2O 3 is sensitively affected by the dopant cation which segregates at the grain boundaries. The dopant effect on the grain boundary diffusivity is related to the ionicity in Al 2O 3; a lower energy level of the dopant element’s outer shells provides a higher value of diffusivity in the divalent or tetravalent cation-doped Al 2O 3. A first-principle molecular orbital calculation revealed that the grain boundary diffusivity correlates well with the net charge of the Al and O ions in the cation-doped Al 2O 3. The ionic bond strength in the vicinity of the grain boundaries dominates the high-temperature grain boundary diffusion in polycrystalline Al 2O 3.</description><subject>Alumina</subject><subject>ALUMINIUM OXIDES</subject><subject>Applied sciences</subject><subject>BOUND STATE</subject><subject>CATIONS</subject><subject>Chemical bonding state</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DIFFUSION</subject><subject>DOPED MATERIALS</subject><subject>ENERGY LEVELS</subject><subject>Exact sciences and technology</subject><subject>GRAIN BOUNDARIES</subject><subject>Grain boundary diffusion</subject><subject>LUTETIUM OXIDES</subject><subject>MAGNESIUM OXIDES</subject><subject>MANGANESE OXIDES</subject><subject>MATERIALS SCIENCE</subject><subject>Metals. Metallurgy</subject><subject>Molecular orbital calculation</subject><subject>OXYGEN IONS</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>PLATINUM OXIDES</subject><subject>POLYCRYSTALS</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>Sintered metals and alloys. Pseudo alloys. Cermets</subject><subject>SINTERING</subject><subject>Solidification</subject><subject>STRONTIUM OXIDES</subject><subject>TEMPERATURE RANGE 0273-0400 K</subject><subject>TITANIUM OXIDES</subject><subject>ZIRCONIUM OXIDES</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkV1rFDEUhgexYG39CcKA6N2MycnHJFci1dpCwZv2OmQzJ5plNlmTTGH_vVl2wct6lUN4zsf7vl33npKREio_b0frqt3ZOgIhfCR6JEy96i6pmtgAXLDXrWZCD5IL_qZ7W8qWEAoTJ5fd7be0t7H26D262qfY_8o2xH6T1jjbfOjn4P1awnOoh77979NycPlQql2WELG3y7oL0V53F94uBd-d36vu6fb7483d8PDzx_3N14fBCZB1ACURYfIgpAOtKMwb5I5PXGjpZ-BaeaccSsJm73VT4dE7IsEpi3JjkV11H05zU6nBFBcqut8uxdiON0AkmyjIRn06Ufuc_qxYqtmF4nBZbMS0FgMaQEpF_wOkGhhhL4NKENpENFCcQJdTKRm92eewa0YaSswxLbM157TMMS1DtGk6W9_H8wJbnF18ttGF8q9ZNkYKaNyXE4fN5eeA-WgCRodzyEcP5hRe2PQXX5WtXQ</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Yoshida, Hidehiro</creator><creator>Hashimoto, Shinsuke</creator><creator>Yamamoto, Takahisa</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope><scope>7QF</scope><scope>OTOTI</scope></search><sort><creationdate>20050101</creationdate><title>Dopant effect on grain boundary diffusivity in polycrystalline alumina</title><author>Yoshida, Hidehiro ; Hashimoto, Shinsuke ; Yamamoto, Takahisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-286ee27f256c29812dbe4c474596fd2498fc8ce603dff9038fefc062c8ae6bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alumina</topic><topic>ALUMINIUM OXIDES</topic><topic>Applied sciences</topic><topic>BOUND STATE</topic><topic>CATIONS</topic><topic>Chemical bonding state</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DIFFUSION</topic><topic>DOPED MATERIALS</topic><topic>ENERGY LEVELS</topic><topic>Exact sciences and technology</topic><topic>GRAIN BOUNDARIES</topic><topic>Grain boundary diffusion</topic><topic>LUTETIUM OXIDES</topic><topic>MAGNESIUM OXIDES</topic><topic>MANGANESE OXIDES</topic><topic>MATERIALS SCIENCE</topic><topic>Metals. Metallurgy</topic><topic>Molecular orbital calculation</topic><topic>OXYGEN IONS</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>PLATINUM OXIDES</topic><topic>POLYCRYSTALS</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>Sintered metals and alloys. Pseudo alloys. Cermets</topic><topic>SINTERING</topic><topic>Solidification</topic><topic>STRONTIUM OXIDES</topic><topic>TEMPERATURE RANGE 0273-0400 K</topic><topic>TITANIUM OXIDES</topic><topic>ZIRCONIUM OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Hidehiro</creatorcontrib><creatorcontrib>Hashimoto, Shinsuke</creatorcontrib><creatorcontrib>Yamamoto, Takahisa</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aluminium Industry Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Hidehiro</au><au>Hashimoto, Shinsuke</au><au>Yamamoto, Takahisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopant effect on grain boundary diffusivity in polycrystalline alumina</atitle><jtitle>Acta materialia</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>53</volume><issue>2</issue><spage>433</spage><epage>440</epage><pages>433-440</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The densification behavior during sintering in 0.1 mol% MgO-, MnO-, SrO-, LuO 1.5-, TiO 2-, ZrO 2- or PtO 2-doped Al 2O 3 was investigated at the sintering temperature of 1300–1500 °C in order to systematically examine the dopant effect on grain boundary diffusivity in Al 2O 3. The densification behavior was monitored from room temperature to the sintering temperature using a laser-scanning system, which allows in situ, non-contact measuring of the specimen’s dimensions. The grain boundary diffusivity in Al 2O 3 is sensitively affected by the dopant cation which segregates at the grain boundaries. The dopant effect on the grain boundary diffusivity is related to the ionicity in Al 2O 3; a lower energy level of the dopant element’s outer shells provides a higher value of diffusivity in the divalent or tetravalent cation-doped Al 2O 3. A first-principle molecular orbital calculation revealed that the grain boundary diffusivity correlates well with the net charge of the Al and O ions in the cation-doped Al 2O 3. The ionic bond strength in the vicinity of the grain boundaries dominates the high-temperature grain boundary diffusion in polycrystalline Al 2O 3.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2004.09.038</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2005-01, Vol.53 (2), p.433-440
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_20637126
source ScienceDirect Journals (5 years ago - present)
subjects Alumina
ALUMINIUM OXIDES
Applied sciences
BOUND STATE
CATIONS
Chemical bonding state
Cross-disciplinary physics: materials science
rheology
DIFFUSION
DOPED MATERIALS
ENERGY LEVELS
Exact sciences and technology
GRAIN BOUNDARIES
Grain boundary diffusion
LUTETIUM OXIDES
MAGNESIUM OXIDES
MANGANESE OXIDES
MATERIALS SCIENCE
Metals. Metallurgy
Molecular orbital calculation
OXYGEN IONS
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
PLATINUM OXIDES
POLYCRYSTALS
Powder metallurgy. Composite materials
Production techniques
Sintered metals and alloys. Pseudo alloys. Cermets
SINTERING
Solidification
STRONTIUM OXIDES
TEMPERATURE RANGE 0273-0400 K
TITANIUM OXIDES
ZIRCONIUM OXIDES
title Dopant effect on grain boundary diffusivity in polycrystalline alumina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopant%20effect%20on%20grain%20boundary%20diffusivity%20in%20polycrystalline%20alumina&rft.jtitle=Acta%20materialia&rft.au=Yoshida,%20Hidehiro&rft.date=2005-01-01&rft.volume=53&rft.issue=2&rft.spage=433&rft.epage=440&rft.pages=433-440&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2004.09.038&rft_dat=%3Cproquest_osti_%3E28501596%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28501596&rft_id=info:pmid/&rft_els_id=S1359645404005919&rfr_iscdi=true