First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals

We propose that the ideal fracture energy of a material with mobile bulk impurities can be obtained within the framework of a Born-Haber thermodynamic cycle. We show that such a definition has the advantage of initial and final states at equilibrium, connected by well-defined and measurable energeti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2004-09, Vol.52 (16), p.4801-4807
Hauptverfasser: Jiang, D.E., Carter, Emily A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4807
container_issue 16
container_start_page 4801
container_title Acta materialia
container_volume 52
creator Jiang, D.E.
Carter, Emily A.
description We propose that the ideal fracture energy of a material with mobile bulk impurities can be obtained within the framework of a Born-Haber thermodynamic cycle. We show that such a definition has the advantage of initial and final states at equilibrium, connected by well-defined and measurable energetic quantities, which can also be calculated from first principles. Using this approach, we calculate the ideal fracture energy of metals (Fe and Al) in the presence of varying amounts of hydrogen, using periodic density functional theory. We find that the metal ideal fracture energy decreases almost linearly with increasing hydrogen coverage, dropping by ∼45% at one-half monolayer of hydrogen, indicating a substantial reduction of metal crystal cohesion in the presence of hydrogen atoms and providing some insight into the cohesion-reduction mechanism of hydrogen embrittlement in metals.
doi_str_mv 10.1016/j.actamat.2004.06.037
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20634776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645404003854</els_id><sourcerecordid>28198048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-3302b7729750e22a2f0dd3ecabca62de92dd488b4824439a190acfff32d7a4423</originalsourceid><addsrcrecordid>eNqFkcGKFDEQhhtRcF19BCEgeus2naSTbi8ii-suLHjRc0gnlZ0M6c6YyrjsQ_jOpp0Rj56qoL6q_6f-pnnd066nvXy_74wtZjGlY5SKjsqOcvWkuehHxVsmBv609nyYWikG8bx5gbintGdK0Ivm13XIWMghh9WGQwQkBhEQF1gLSZ4EByYSn6vCMQOBFfJ9qFQdVUHIwUQkD6HsyJLmEIGE5XDMoVTmw9bHYE0JaUXiUya7R5fTPawElrlCJcJfnQVKvfSyeeZrgVfnetl8v_787eqmvfv65fbq011r-SRLyzlls1JsUgMFxgzz1DkO1szWSOZgYs6JcZzFyITgk-knaqz3njOnjBCMXzZvTncTlqDRhgJ2Z9O6gi2aUcmFUrJS707UIacfR8Cil4AWYjQrpCNqNvbTSMVYweEE2pwQM3hd_7mY_Kh7qreI9F6fI9JbRJpKXSOqe2_PAgatifXLNQT8tyzpMKk_dj-eOKg_-Rkgb5ZhteBC3hy7FP6j9Btpsq1x</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28198048</pqid></control><display><type>article</type><title>First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jiang, D.E. ; Carter, Emily A.</creator><creatorcontrib>Jiang, D.E. ; Carter, Emily A.</creatorcontrib><description>We propose that the ideal fracture energy of a material with mobile bulk impurities can be obtained within the framework of a Born-Haber thermodynamic cycle. We show that such a definition has the advantage of initial and final states at equilibrium, connected by well-defined and measurable energetic quantities, which can also be calculated from first principles. Using this approach, we calculate the ideal fracture energy of metals (Fe and Al) in the presence of varying amounts of hydrogen, using periodic density functional theory. We find that the metal ideal fracture energy decreases almost linearly with increasing hydrogen coverage, dropping by ∼45% at one-half monolayer of hydrogen, indicating a substantial reduction of metal crystal cohesion in the presence of hydrogen atoms and providing some insight into the cohesion-reduction mechanism of hydrogen embrittlement in metals.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2004.06.037</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>ALUMINIUM ; Aluminum ; Condensed matter: structure, mechanical and thermal properties ; DENSITY FUNCTIONAL METHOD ; ELECTRONIC STRUCTURE ; Exact sciences and technology ; Fatigue, brittleness, fracture, and cracks ; First principles electronic structure ; FRACTURES ; HYDROGEN ; HYDROGEN EMBRITTLEMENT ; IMPURITIES ; IRON ; MATERIALS SCIENCE ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Physics ; THERMODYNAMIC CYCLES</subject><ispartof>Acta materialia, 2004-09, Vol.52 (16), p.4801-4807</ispartof><rights>2004 Acta Materialia Inc.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-3302b7729750e22a2f0dd3ecabca62de92dd488b4824439a190acfff32d7a4423</citedby><cites>FETCH-LOGICAL-c396t-3302b7729750e22a2f0dd3ecabca62de92dd488b4824439a190acfff32d7a4423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2004.06.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16059742$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20634776$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, D.E.</creatorcontrib><creatorcontrib>Carter, Emily A.</creatorcontrib><title>First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals</title><title>Acta materialia</title><description>We propose that the ideal fracture energy of a material with mobile bulk impurities can be obtained within the framework of a Born-Haber thermodynamic cycle. We show that such a definition has the advantage of initial and final states at equilibrium, connected by well-defined and measurable energetic quantities, which can also be calculated from first principles. Using this approach, we calculate the ideal fracture energy of metals (Fe and Al) in the presence of varying amounts of hydrogen, using periodic density functional theory. We find that the metal ideal fracture energy decreases almost linearly with increasing hydrogen coverage, dropping by ∼45% at one-half monolayer of hydrogen, indicating a substantial reduction of metal crystal cohesion in the presence of hydrogen atoms and providing some insight into the cohesion-reduction mechanism of hydrogen embrittlement in metals.</description><subject>ALUMINIUM</subject><subject>Aluminum</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>ELECTRONIC STRUCTURE</subject><subject>Exact sciences and technology</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>First principles electronic structure</subject><subject>FRACTURES</subject><subject>HYDROGEN</subject><subject>HYDROGEN EMBRITTLEMENT</subject><subject>IMPURITIES</subject><subject>IRON</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Physics</subject><subject>THERMODYNAMIC CYCLES</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkcGKFDEQhhtRcF19BCEgeus2naSTbi8ii-suLHjRc0gnlZ0M6c6YyrjsQ_jOpp0Rj56qoL6q_6f-pnnd066nvXy_74wtZjGlY5SKjsqOcvWkuehHxVsmBv609nyYWikG8bx5gbintGdK0Ivm13XIWMghh9WGQwQkBhEQF1gLSZ4EByYSn6vCMQOBFfJ9qFQdVUHIwUQkD6HsyJLmEIGE5XDMoVTmw9bHYE0JaUXiUya7R5fTPawElrlCJcJfnQVKvfSyeeZrgVfnetl8v_787eqmvfv65fbq011r-SRLyzlls1JsUgMFxgzz1DkO1szWSOZgYs6JcZzFyITgk-knaqz3njOnjBCMXzZvTncTlqDRhgJ2Z9O6gi2aUcmFUrJS707UIacfR8Cil4AWYjQrpCNqNvbTSMVYweEE2pwQM3hd_7mY_Kh7qreI9F6fI9JbRJpKXSOqe2_PAgatifXLNQT8tyzpMKk_dj-eOKg_-Rkgb5ZhteBC3hy7FP6j9Btpsq1x</recordid><startdate>20040920</startdate><enddate>20040920</enddate><creator>Jiang, D.E.</creator><creator>Carter, Emily A.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SC</scope><scope>7SE</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20040920</creationdate><title>First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals</title><author>Jiang, D.E. ; Carter, Emily A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-3302b7729750e22a2f0dd3ecabca62de92dd488b4824439a190acfff32d7a4423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>ALUMINIUM</topic><topic>Aluminum</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>ELECTRONIC STRUCTURE</topic><topic>Exact sciences and technology</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>First principles electronic structure</topic><topic>FRACTURES</topic><topic>HYDROGEN</topic><topic>HYDROGEN EMBRITTLEMENT</topic><topic>IMPURITIES</topic><topic>IRON</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Physics</topic><topic>THERMODYNAMIC CYCLES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, D.E.</creatorcontrib><creatorcontrib>Carter, Emily A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, D.E.</au><au>Carter, Emily A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals</atitle><jtitle>Acta materialia</jtitle><date>2004-09-20</date><risdate>2004</risdate><volume>52</volume><issue>16</issue><spage>4801</spage><epage>4807</epage><pages>4801-4807</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>We propose that the ideal fracture energy of a material with mobile bulk impurities can be obtained within the framework of a Born-Haber thermodynamic cycle. We show that such a definition has the advantage of initial and final states at equilibrium, connected by well-defined and measurable energetic quantities, which can also be calculated from first principles. Using this approach, we calculate the ideal fracture energy of metals (Fe and Al) in the presence of varying amounts of hydrogen, using periodic density functional theory. We find that the metal ideal fracture energy decreases almost linearly with increasing hydrogen coverage, dropping by ∼45% at one-half monolayer of hydrogen, indicating a substantial reduction of metal crystal cohesion in the presence of hydrogen atoms and providing some insight into the cohesion-reduction mechanism of hydrogen embrittlement in metals.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2004.06.037</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2004-09, Vol.52 (16), p.4801-4807
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_20634776
source ScienceDirect Journals (5 years ago - present)
subjects ALUMINIUM
Aluminum
Condensed matter: structure, mechanical and thermal properties
DENSITY FUNCTIONAL METHOD
ELECTRONIC STRUCTURE
Exact sciences and technology
Fatigue, brittleness, fracture, and cracks
First principles electronic structure
FRACTURES
HYDROGEN
HYDROGEN EMBRITTLEMENT
IMPURITIES
IRON
MATERIALS SCIENCE
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Physics
THERMODYNAMIC CYCLES
title First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20principles%20assessment%20of%20ideal%20fracture%20energies%20of%20materials%20with%20mobile%20impurities:%20implications%20for%20hydrogen%20embrittlement%20of%20metals&rft.jtitle=Acta%20materialia&rft.au=Jiang,%20D.E.&rft.date=2004-09-20&rft.volume=52&rft.issue=16&rft.spage=4801&rft.epage=4807&rft.pages=4801-4807&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2004.06.037&rft_dat=%3Cproquest_osti_%3E28198048%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28198048&rft_id=info:pmid/&rft_els_id=S1359645404003854&rfr_iscdi=true