Respiration tracking in radiosurgery

Respiratory motion is difficult to compensate for with conventional radiotherapy systems. An accurate tracking method for following the motion of the tumor is of considerable clinical relevance. We investigate methods to compensate for respiratory motion using robotic radiosurgery. In this system th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2004-10, Vol.31 (10), p.2738-2741
Hauptverfasser: Schweikard, Achim, Shiomi, Hiroya, Adler, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2741
container_issue 10
container_start_page 2738
container_title Medical physics (Lancaster)
container_volume 31
creator Schweikard, Achim
Shiomi, Hiroya
Adler, John
description Respiratory motion is difficult to compensate for with conventional radiotherapy systems. An accurate tracking method for following the motion of the tumor is of considerable clinical relevance. We investigate methods to compensate for respiratory motion using robotic radiosurgery. In this system the therapeutic beam is moved by a robotic arm, and follows the moving target through a combination of infrared tracking and synchronized x-ray imaging. Infrared emitters are used to record the motion of the patient’s skin surface. The position of internal gold fiducials is computed repeatedly during treatment, via x-ray image processing. We correlate the motion between external and internal markers. From this correlation model we infer the placement of the internal target during time intervals where no x-ray images are taken. Fifteen patients with lung tumors have recently been treated with a fully integrated system implementing this new method. The clinical trials confirm our hypothesis that internal motion and external motion are indeed correlated. In a preliminar study we have extended our work to tracking without implanted fiducials, based on algorithms for computing deformation motions and digitally reconstructed radiographs.
doi_str_mv 10.1118/1.1774132
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20634588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67076887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4832-fd871c4cae946d4c7540bab37500b8b3059d02aa27c01d44ed56bb6a9546f373</originalsourceid><addsrcrecordid>eNp90E9LwzAcxvEgipvTg29ABoqg0PlLkzTpUYb_YKLI7iFN0xntmpm0yt69nS3oZZ5y-fBN8iB0jGGCMRZXeII5p5jEO2gYU04iGkO6i4YAKY1iCmyADkJ4A4CEMNhHA8wYJZyLITp7MWFlvaqtq8a1V_rdVouxrcZe5daFxi-MXx-ivUKVwRz15wjNb2_m0_to9nT3ML2eRZoKEkdFLjjWVCuT0iSnmjMKmcoIZwCZyAiwNIdYqZhrwDmlJmdJliUqZTQpCCcjdNplXaitDNrWRr9qV1VG1zJu306ZEK0679TKu4_GhFoubdCmLFVlXBNkwoEnQmxyFx3U3oXgTSFX3i6VX0sMcrObxLLfrbUnfbTJlib_lf1QLYg68GVLs95eko_PffCy85tv_Kz77-1b8afzf-KrvCDfKcSPIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67076887</pqid></control><display><type>article</type><title>Respiration tracking in radiosurgery</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Schweikard, Achim ; Shiomi, Hiroya ; Adler, John</creator><creatorcontrib>Schweikard, Achim ; Shiomi, Hiroya ; Adler, John</creatorcontrib><description>Respiratory motion is difficult to compensate for with conventional radiotherapy systems. An accurate tracking method for following the motion of the tumor is of considerable clinical relevance. We investigate methods to compensate for respiratory motion using robotic radiosurgery. In this system the therapeutic beam is moved by a robotic arm, and follows the moving target through a combination of infrared tracking and synchronized x-ray imaging. Infrared emitters are used to record the motion of the patient’s skin surface. The position of internal gold fiducials is computed repeatedly during treatment, via x-ray image processing. We correlate the motion between external and internal markers. From this correlation model we infer the placement of the internal target during time intervals where no x-ray images are taken. Fifteen patients with lung tumors have recently been treated with a fully integrated system implementing this new method. The clinical trials confirm our hypothesis that internal motion and external motion are indeed correlated. In a preliminar study we have extended our work to tracking without implanted fiducials, based on algorithms for computing deformation motions and digitally reconstructed radiographs.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1774132</identifier><identifier>PMID: 15543778</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>ALGORITHMS ; biomechanics ; cancer ; CLINICAL TRIALS ; Clinical Trials as Topic ; Computer‐aided diagnosis ; correlation methods ; DEFORMATION ; diagnostic radiography ; Equipment Design ; Equipment Failure Analysis ; gold ; Hemodynamics ; Humans ; Image analysis ; IMAGE PROCESSING ; image reconstruction ; Infrared Rays ; lung ; LUNGS ; Mechanical and electrical properties of tissues and organs ; medical image processing ; Medical imaging ; medical robotics ; NEOPLASMS ; Neuronavigation - instrumentation ; Neuronavigation - methods ; optical tracking ; PATIENTS ; Pneumodyamics, respiration ; pneumodynamics ; prosthetics ; radiation therapy ; Radiation therapy equipment ; Radiography ; RADIOLOGY AND NUCLEAR MEDICINE ; Radiosurgery ; Radiosurgery - instrumentation ; Radiosurgery - methods ; RADIOTHERAPY ; RESPIRATION ; respiration tracking ; Respiratory Mechanics ; Robotics ; Robotics - instrumentation ; Robotics - methods ; SKIN ; soft‐tissue navigation ; Subtraction Technique ; SURGERY ; Systems Integration ; Therapeutics ; tumours ; whole body radiosurgery ; X‐ray imaging</subject><ispartof>Medical physics (Lancaster), 2004-10, Vol.31 (10), p.2738-2741</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2004 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4832-fd871c4cae946d4c7540bab37500b8b3059d02aa27c01d44ed56bb6a9546f373</citedby><cites>FETCH-LOGICAL-c4832-fd871c4cae946d4c7540bab37500b8b3059d02aa27c01d44ed56bb6a9546f373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1774132$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1774132$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15543778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20634588$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schweikard, Achim</creatorcontrib><creatorcontrib>Shiomi, Hiroya</creatorcontrib><creatorcontrib>Adler, John</creatorcontrib><title>Respiration tracking in radiosurgery</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Respiratory motion is difficult to compensate for with conventional radiotherapy systems. An accurate tracking method for following the motion of the tumor is of considerable clinical relevance. We investigate methods to compensate for respiratory motion using robotic radiosurgery. In this system the therapeutic beam is moved by a robotic arm, and follows the moving target through a combination of infrared tracking and synchronized x-ray imaging. Infrared emitters are used to record the motion of the patient’s skin surface. The position of internal gold fiducials is computed repeatedly during treatment, via x-ray image processing. We correlate the motion between external and internal markers. From this correlation model we infer the placement of the internal target during time intervals where no x-ray images are taken. Fifteen patients with lung tumors have recently been treated with a fully integrated system implementing this new method. The clinical trials confirm our hypothesis that internal motion and external motion are indeed correlated. In a preliminar study we have extended our work to tracking without implanted fiducials, based on algorithms for computing deformation motions and digitally reconstructed radiographs.</description><subject>ALGORITHMS</subject><subject>biomechanics</subject><subject>cancer</subject><subject>CLINICAL TRIALS</subject><subject>Clinical Trials as Topic</subject><subject>Computer‐aided diagnosis</subject><subject>correlation methods</subject><subject>DEFORMATION</subject><subject>diagnostic radiography</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>gold</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Image analysis</subject><subject>IMAGE PROCESSING</subject><subject>image reconstruction</subject><subject>Infrared Rays</subject><subject>lung</subject><subject>LUNGS</subject><subject>Mechanical and electrical properties of tissues and organs</subject><subject>medical image processing</subject><subject>Medical imaging</subject><subject>medical robotics</subject><subject>NEOPLASMS</subject><subject>Neuronavigation - instrumentation</subject><subject>Neuronavigation - methods</subject><subject>optical tracking</subject><subject>PATIENTS</subject><subject>Pneumodyamics, respiration</subject><subject>pneumodynamics</subject><subject>prosthetics</subject><subject>radiation therapy</subject><subject>Radiation therapy equipment</subject><subject>Radiography</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radiosurgery</subject><subject>Radiosurgery - instrumentation</subject><subject>Radiosurgery - methods</subject><subject>RADIOTHERAPY</subject><subject>RESPIRATION</subject><subject>respiration tracking</subject><subject>Respiratory Mechanics</subject><subject>Robotics</subject><subject>Robotics - instrumentation</subject><subject>Robotics - methods</subject><subject>SKIN</subject><subject>soft‐tissue navigation</subject><subject>Subtraction Technique</subject><subject>SURGERY</subject><subject>Systems Integration</subject><subject>Therapeutics</subject><subject>tumours</subject><subject>whole body radiosurgery</subject><subject>X‐ray imaging</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E9LwzAcxvEgipvTg29ABoqg0PlLkzTpUYb_YKLI7iFN0xntmpm0yt69nS3oZZ5y-fBN8iB0jGGCMRZXeII5p5jEO2gYU04iGkO6i4YAKY1iCmyADkJ4A4CEMNhHA8wYJZyLITp7MWFlvaqtq8a1V_rdVouxrcZe5daFxi-MXx-ivUKVwRz15wjNb2_m0_to9nT3ML2eRZoKEkdFLjjWVCuT0iSnmjMKmcoIZwCZyAiwNIdYqZhrwDmlJmdJliUqZTQpCCcjdNplXaitDNrWRr9qV1VG1zJu306ZEK0679TKu4_GhFoubdCmLFVlXBNkwoEnQmxyFx3U3oXgTSFX3i6VX0sMcrObxLLfrbUnfbTJlib_lf1QLYg68GVLs95eko_PffCy85tv_Kz77-1b8afzf-KrvCDfKcSPIQ</recordid><startdate>200410</startdate><enddate>200410</enddate><creator>Schweikard, Achim</creator><creator>Shiomi, Hiroya</creator><creator>Adler, John</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>200410</creationdate><title>Respiration tracking in radiosurgery</title><author>Schweikard, Achim ; Shiomi, Hiroya ; Adler, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4832-fd871c4cae946d4c7540bab37500b8b3059d02aa27c01d44ed56bb6a9546f373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>ALGORITHMS</topic><topic>biomechanics</topic><topic>cancer</topic><topic>CLINICAL TRIALS</topic><topic>Clinical Trials as Topic</topic><topic>Computer‐aided diagnosis</topic><topic>correlation methods</topic><topic>DEFORMATION</topic><topic>diagnostic radiography</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>gold</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Image analysis</topic><topic>IMAGE PROCESSING</topic><topic>image reconstruction</topic><topic>Infrared Rays</topic><topic>lung</topic><topic>LUNGS</topic><topic>Mechanical and electrical properties of tissues and organs</topic><topic>medical image processing</topic><topic>Medical imaging</topic><topic>medical robotics</topic><topic>NEOPLASMS</topic><topic>Neuronavigation - instrumentation</topic><topic>Neuronavigation - methods</topic><topic>optical tracking</topic><topic>PATIENTS</topic><topic>Pneumodyamics, respiration</topic><topic>pneumodynamics</topic><topic>prosthetics</topic><topic>radiation therapy</topic><topic>Radiation therapy equipment</topic><topic>Radiography</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radiosurgery</topic><topic>Radiosurgery - instrumentation</topic><topic>Radiosurgery - methods</topic><topic>RADIOTHERAPY</topic><topic>RESPIRATION</topic><topic>respiration tracking</topic><topic>Respiratory Mechanics</topic><topic>Robotics</topic><topic>Robotics - instrumentation</topic><topic>Robotics - methods</topic><topic>SKIN</topic><topic>soft‐tissue navigation</topic><topic>Subtraction Technique</topic><topic>SURGERY</topic><topic>Systems Integration</topic><topic>Therapeutics</topic><topic>tumours</topic><topic>whole body radiosurgery</topic><topic>X‐ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schweikard, Achim</creatorcontrib><creatorcontrib>Shiomi, Hiroya</creatorcontrib><creatorcontrib>Adler, John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schweikard, Achim</au><au>Shiomi, Hiroya</au><au>Adler, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Respiration tracking in radiosurgery</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2004-10</date><risdate>2004</risdate><volume>31</volume><issue>10</issue><spage>2738</spage><epage>2741</epage><pages>2738-2741</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Respiratory motion is difficult to compensate for with conventional radiotherapy systems. An accurate tracking method for following the motion of the tumor is of considerable clinical relevance. We investigate methods to compensate for respiratory motion using robotic radiosurgery. In this system the therapeutic beam is moved by a robotic arm, and follows the moving target through a combination of infrared tracking and synchronized x-ray imaging. Infrared emitters are used to record the motion of the patient’s skin surface. The position of internal gold fiducials is computed repeatedly during treatment, via x-ray image processing. We correlate the motion between external and internal markers. From this correlation model we infer the placement of the internal target during time intervals where no x-ray images are taken. Fifteen patients with lung tumors have recently been treated with a fully integrated system implementing this new method. The clinical trials confirm our hypothesis that internal motion and external motion are indeed correlated. In a preliminar study we have extended our work to tracking without implanted fiducials, based on algorithms for computing deformation motions and digitally reconstructed radiographs.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>15543778</pmid><doi>10.1118/1.1774132</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2004-10, Vol.31 (10), p.2738-2741
issn 0094-2405
2473-4209
language eng
recordid cdi_osti_scitechconnect_20634588
source MEDLINE; Wiley Journals
subjects ALGORITHMS
biomechanics
cancer
CLINICAL TRIALS
Clinical Trials as Topic
Computer‐aided diagnosis
correlation methods
DEFORMATION
diagnostic radiography
Equipment Design
Equipment Failure Analysis
gold
Hemodynamics
Humans
Image analysis
IMAGE PROCESSING
image reconstruction
Infrared Rays
lung
LUNGS
Mechanical and electrical properties of tissues and organs
medical image processing
Medical imaging
medical robotics
NEOPLASMS
Neuronavigation - instrumentation
Neuronavigation - methods
optical tracking
PATIENTS
Pneumodyamics, respiration
pneumodynamics
prosthetics
radiation therapy
Radiation therapy equipment
Radiography
RADIOLOGY AND NUCLEAR MEDICINE
Radiosurgery
Radiosurgery - instrumentation
Radiosurgery - methods
RADIOTHERAPY
RESPIRATION
respiration tracking
Respiratory Mechanics
Robotics
Robotics - instrumentation
Robotics - methods
SKIN
soft‐tissue navigation
Subtraction Technique
SURGERY
Systems Integration
Therapeutics
tumours
whole body radiosurgery
X‐ray imaging
title Respiration tracking in radiosurgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T08%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Respiration%20tracking%20in%20radiosurgery&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Schweikard,%20Achim&rft.date=2004-10&rft.volume=31&rft.issue=10&rft.spage=2738&rft.epage=2741&rft.pages=2738-2741&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1774132&rft_dat=%3Cproquest_osti_%3E67076887%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67076887&rft_id=info:pmid/15543778&rfr_iscdi=true