Respiration tracking in radiosurgery
Respiratory motion is difficult to compensate for with conventional radiotherapy systems. An accurate tracking method for following the motion of the tumor is of considerable clinical relevance. We investigate methods to compensate for respiratory motion using robotic radiosurgery. In this system th...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2004-10, Vol.31 (10), p.2738-2741 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2741 |
---|---|
container_issue | 10 |
container_start_page | 2738 |
container_title | Medical physics (Lancaster) |
container_volume | 31 |
creator | Schweikard, Achim Shiomi, Hiroya Adler, John |
description | Respiratory motion is difficult to compensate for with conventional radiotherapy systems. An accurate tracking method for following the motion of the tumor is of considerable clinical relevance. We investigate methods to compensate for respiratory motion using robotic radiosurgery. In this system the therapeutic beam is moved by a robotic arm, and follows the moving target through a combination of infrared tracking and synchronized x-ray imaging. Infrared emitters are used to record the motion of the patient’s skin surface. The position of internal gold fiducials is computed repeatedly during treatment, via x-ray image processing. We correlate the motion between external and internal markers. From this correlation model we infer the placement of the internal target during time intervals where no x-ray images are taken. Fifteen patients with lung tumors have recently been treated with a fully integrated system implementing this new method. The clinical trials confirm our hypothesis that internal motion and external motion are indeed correlated. In a preliminar study we have extended our work to tracking without implanted fiducials, based on algorithms for computing deformation motions and digitally reconstructed radiographs. |
doi_str_mv | 10.1118/1.1774132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_20634588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67076887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4832-fd871c4cae946d4c7540bab37500b8b3059d02aa27c01d44ed56bb6a9546f373</originalsourceid><addsrcrecordid>eNp90E9LwzAcxvEgipvTg29ABoqg0PlLkzTpUYb_YKLI7iFN0xntmpm0yt69nS3oZZ5y-fBN8iB0jGGCMRZXeII5p5jEO2gYU04iGkO6i4YAKY1iCmyADkJ4A4CEMNhHA8wYJZyLITp7MWFlvaqtq8a1V_rdVouxrcZe5daFxi-MXx-ivUKVwRz15wjNb2_m0_to9nT3ML2eRZoKEkdFLjjWVCuT0iSnmjMKmcoIZwCZyAiwNIdYqZhrwDmlJmdJliUqZTQpCCcjdNplXaitDNrWRr9qV1VG1zJu306ZEK0679TKu4_GhFoubdCmLFVlXBNkwoEnQmxyFx3U3oXgTSFX3i6VX0sMcrObxLLfrbUnfbTJlib_lf1QLYg68GVLs95eko_PffCy85tv_Kz77-1b8afzf-KrvCDfKcSPIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67076887</pqid></control><display><type>article</type><title>Respiration tracking in radiosurgery</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Schweikard, Achim ; Shiomi, Hiroya ; Adler, John</creator><creatorcontrib>Schweikard, Achim ; Shiomi, Hiroya ; Adler, John</creatorcontrib><description>Respiratory motion is difficult to compensate for with conventional radiotherapy systems. An accurate tracking method for following the motion of the tumor is of considerable clinical relevance. We investigate methods to compensate for respiratory motion using robotic radiosurgery. In this system the therapeutic beam is moved by a robotic arm, and follows the moving target through a combination of infrared tracking and synchronized x-ray imaging. Infrared emitters are used to record the motion of the patient’s skin surface. The position of internal gold fiducials is computed repeatedly during treatment, via x-ray image processing. We correlate the motion between external and internal markers. From this correlation model we infer the placement of the internal target during time intervals where no x-ray images are taken. Fifteen patients with lung tumors have recently been treated with a fully integrated system implementing this new method. The clinical trials confirm our hypothesis that internal motion and external motion are indeed correlated. In a preliminar study we have extended our work to tracking without implanted fiducials, based on algorithms for computing deformation motions and digitally reconstructed radiographs.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1774132</identifier><identifier>PMID: 15543778</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>ALGORITHMS ; biomechanics ; cancer ; CLINICAL TRIALS ; Clinical Trials as Topic ; Computer‐aided diagnosis ; correlation methods ; DEFORMATION ; diagnostic radiography ; Equipment Design ; Equipment Failure Analysis ; gold ; Hemodynamics ; Humans ; Image analysis ; IMAGE PROCESSING ; image reconstruction ; Infrared Rays ; lung ; LUNGS ; Mechanical and electrical properties of tissues and organs ; medical image processing ; Medical imaging ; medical robotics ; NEOPLASMS ; Neuronavigation - instrumentation ; Neuronavigation - methods ; optical tracking ; PATIENTS ; Pneumodyamics, respiration ; pneumodynamics ; prosthetics ; radiation therapy ; Radiation therapy equipment ; Radiography ; RADIOLOGY AND NUCLEAR MEDICINE ; Radiosurgery ; Radiosurgery - instrumentation ; Radiosurgery - methods ; RADIOTHERAPY ; RESPIRATION ; respiration tracking ; Respiratory Mechanics ; Robotics ; Robotics - instrumentation ; Robotics - methods ; SKIN ; soft‐tissue navigation ; Subtraction Technique ; SURGERY ; Systems Integration ; Therapeutics ; tumours ; whole body radiosurgery ; X‐ray imaging</subject><ispartof>Medical physics (Lancaster), 2004-10, Vol.31 (10), p.2738-2741</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2004 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4832-fd871c4cae946d4c7540bab37500b8b3059d02aa27c01d44ed56bb6a9546f373</citedby><cites>FETCH-LOGICAL-c4832-fd871c4cae946d4c7540bab37500b8b3059d02aa27c01d44ed56bb6a9546f373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1774132$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1774132$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15543778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20634588$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schweikard, Achim</creatorcontrib><creatorcontrib>Shiomi, Hiroya</creatorcontrib><creatorcontrib>Adler, John</creatorcontrib><title>Respiration tracking in radiosurgery</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Respiratory motion is difficult to compensate for with conventional radiotherapy systems. An accurate tracking method for following the motion of the tumor is of considerable clinical relevance. We investigate methods to compensate for respiratory motion using robotic radiosurgery. In this system the therapeutic beam is moved by a robotic arm, and follows the moving target through a combination of infrared tracking and synchronized x-ray imaging. Infrared emitters are used to record the motion of the patient’s skin surface. The position of internal gold fiducials is computed repeatedly during treatment, via x-ray image processing. We correlate the motion between external and internal markers. From this correlation model we infer the placement of the internal target during time intervals where no x-ray images are taken. Fifteen patients with lung tumors have recently been treated with a fully integrated system implementing this new method. The clinical trials confirm our hypothesis that internal motion and external motion are indeed correlated. In a preliminar study we have extended our work to tracking without implanted fiducials, based on algorithms for computing deformation motions and digitally reconstructed radiographs.</description><subject>ALGORITHMS</subject><subject>biomechanics</subject><subject>cancer</subject><subject>CLINICAL TRIALS</subject><subject>Clinical Trials as Topic</subject><subject>Computer‐aided diagnosis</subject><subject>correlation methods</subject><subject>DEFORMATION</subject><subject>diagnostic radiography</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>gold</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Image analysis</subject><subject>IMAGE PROCESSING</subject><subject>image reconstruction</subject><subject>Infrared Rays</subject><subject>lung</subject><subject>LUNGS</subject><subject>Mechanical and electrical properties of tissues and organs</subject><subject>medical image processing</subject><subject>Medical imaging</subject><subject>medical robotics</subject><subject>NEOPLASMS</subject><subject>Neuronavigation - instrumentation</subject><subject>Neuronavigation - methods</subject><subject>optical tracking</subject><subject>PATIENTS</subject><subject>Pneumodyamics, respiration</subject><subject>pneumodynamics</subject><subject>prosthetics</subject><subject>radiation therapy</subject><subject>Radiation therapy equipment</subject><subject>Radiography</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radiosurgery</subject><subject>Radiosurgery - instrumentation</subject><subject>Radiosurgery - methods</subject><subject>RADIOTHERAPY</subject><subject>RESPIRATION</subject><subject>respiration tracking</subject><subject>Respiratory Mechanics</subject><subject>Robotics</subject><subject>Robotics - instrumentation</subject><subject>Robotics - methods</subject><subject>SKIN</subject><subject>soft‐tissue navigation</subject><subject>Subtraction Technique</subject><subject>SURGERY</subject><subject>Systems Integration</subject><subject>Therapeutics</subject><subject>tumours</subject><subject>whole body radiosurgery</subject><subject>X‐ray imaging</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E9LwzAcxvEgipvTg29ABoqg0PlLkzTpUYb_YKLI7iFN0xntmpm0yt69nS3oZZ5y-fBN8iB0jGGCMRZXeII5p5jEO2gYU04iGkO6i4YAKY1iCmyADkJ4A4CEMNhHA8wYJZyLITp7MWFlvaqtq8a1V_rdVouxrcZe5daFxi-MXx-ivUKVwRz15wjNb2_m0_to9nT3ML2eRZoKEkdFLjjWVCuT0iSnmjMKmcoIZwCZyAiwNIdYqZhrwDmlJmdJliUqZTQpCCcjdNplXaitDNrWRr9qV1VG1zJu306ZEK0679TKu4_GhFoubdCmLFVlXBNkwoEnQmxyFx3U3oXgTSFX3i6VX0sMcrObxLLfrbUnfbTJlib_lf1QLYg68GVLs95eko_PffCy85tv_Kz77-1b8afzf-KrvCDfKcSPIQ</recordid><startdate>200410</startdate><enddate>200410</enddate><creator>Schweikard, Achim</creator><creator>Shiomi, Hiroya</creator><creator>Adler, John</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>200410</creationdate><title>Respiration tracking in radiosurgery</title><author>Schweikard, Achim ; Shiomi, Hiroya ; Adler, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4832-fd871c4cae946d4c7540bab37500b8b3059d02aa27c01d44ed56bb6a9546f373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>ALGORITHMS</topic><topic>biomechanics</topic><topic>cancer</topic><topic>CLINICAL TRIALS</topic><topic>Clinical Trials as Topic</topic><topic>Computer‐aided diagnosis</topic><topic>correlation methods</topic><topic>DEFORMATION</topic><topic>diagnostic radiography</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>gold</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Image analysis</topic><topic>IMAGE PROCESSING</topic><topic>image reconstruction</topic><topic>Infrared Rays</topic><topic>lung</topic><topic>LUNGS</topic><topic>Mechanical and electrical properties of tissues and organs</topic><topic>medical image processing</topic><topic>Medical imaging</topic><topic>medical robotics</topic><topic>NEOPLASMS</topic><topic>Neuronavigation - instrumentation</topic><topic>Neuronavigation - methods</topic><topic>optical tracking</topic><topic>PATIENTS</topic><topic>Pneumodyamics, respiration</topic><topic>pneumodynamics</topic><topic>prosthetics</topic><topic>radiation therapy</topic><topic>Radiation therapy equipment</topic><topic>Radiography</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radiosurgery</topic><topic>Radiosurgery - instrumentation</topic><topic>Radiosurgery - methods</topic><topic>RADIOTHERAPY</topic><topic>RESPIRATION</topic><topic>respiration tracking</topic><topic>Respiratory Mechanics</topic><topic>Robotics</topic><topic>Robotics - instrumentation</topic><topic>Robotics - methods</topic><topic>SKIN</topic><topic>soft‐tissue navigation</topic><topic>Subtraction Technique</topic><topic>SURGERY</topic><topic>Systems Integration</topic><topic>Therapeutics</topic><topic>tumours</topic><topic>whole body radiosurgery</topic><topic>X‐ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schweikard, Achim</creatorcontrib><creatorcontrib>Shiomi, Hiroya</creatorcontrib><creatorcontrib>Adler, John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schweikard, Achim</au><au>Shiomi, Hiroya</au><au>Adler, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Respiration tracking in radiosurgery</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2004-10</date><risdate>2004</risdate><volume>31</volume><issue>10</issue><spage>2738</spage><epage>2741</epage><pages>2738-2741</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Respiratory motion is difficult to compensate for with conventional radiotherapy systems. An accurate tracking method for following the motion of the tumor is of considerable clinical relevance. We investigate methods to compensate for respiratory motion using robotic radiosurgery. In this system the therapeutic beam is moved by a robotic arm, and follows the moving target through a combination of infrared tracking and synchronized x-ray imaging. Infrared emitters are used to record the motion of the patient’s skin surface. The position of internal gold fiducials is computed repeatedly during treatment, via x-ray image processing. We correlate the motion between external and internal markers. From this correlation model we infer the placement of the internal target during time intervals where no x-ray images are taken. Fifteen patients with lung tumors have recently been treated with a fully integrated system implementing this new method. The clinical trials confirm our hypothesis that internal motion and external motion are indeed correlated. In a preliminar study we have extended our work to tracking without implanted fiducials, based on algorithms for computing deformation motions and digitally reconstructed radiographs.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>15543778</pmid><doi>10.1118/1.1774132</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2004-10, Vol.31 (10), p.2738-2741 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_osti_scitechconnect_20634588 |
source | MEDLINE; Wiley Journals |
subjects | ALGORITHMS biomechanics cancer CLINICAL TRIALS Clinical Trials as Topic Computer‐aided diagnosis correlation methods DEFORMATION diagnostic radiography Equipment Design Equipment Failure Analysis gold Hemodynamics Humans Image analysis IMAGE PROCESSING image reconstruction Infrared Rays lung LUNGS Mechanical and electrical properties of tissues and organs medical image processing Medical imaging medical robotics NEOPLASMS Neuronavigation - instrumentation Neuronavigation - methods optical tracking PATIENTS Pneumodyamics, respiration pneumodynamics prosthetics radiation therapy Radiation therapy equipment Radiography RADIOLOGY AND NUCLEAR MEDICINE Radiosurgery Radiosurgery - instrumentation Radiosurgery - methods RADIOTHERAPY RESPIRATION respiration tracking Respiratory Mechanics Robotics Robotics - instrumentation Robotics - methods SKIN soft‐tissue navigation Subtraction Technique SURGERY Systems Integration Therapeutics tumours whole body radiosurgery X‐ray imaging |
title | Respiration tracking in radiosurgery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T08%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Respiration%20tracking%20in%20radiosurgery&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Schweikard,%20Achim&rft.date=2004-10&rft.volume=31&rft.issue=10&rft.spage=2738&rft.epage=2741&rft.pages=2738-2741&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1774132&rft_dat=%3Cproquest_osti_%3E67076887%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67076887&rft_id=info:pmid/15543778&rfr_iscdi=true |